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Session 1, November 14th, 08h30 – 08h50

Spin-orbit torque switching in ferromagnets and
ferrimagnets induced by picosecond electrical pulses

Eva Díaz1, *, Alberto Anadón1, Martina Morassi2, Aristide Lemaître2, Michel Hehn1, and Jon Gorchon1

1Institut Jean Lamour, CNRS, Université de Lorraine, Nancy, France
2Centre de Nanosciences et de Nanotechnologies, CNRS, Université Paris-Saclay, Palaiseau, France

*eva.diaz@univ-lorraine.fr

The development of high-speed devices with low energy consumption is currently an important challenge in the memory
technology industry. In this regard, spintronic devices, which are based upon the use of the electron’s spin degree of freedom,
show great potential as an alternative to conventional devices. Within this realm, spin-orbit torque (SOT) switching is a
largely studied mechanism which offers desirable qualities, such as high switching speed and energy efficiency. The fastest
SOT switching to date has been achieved using a 6 ps electrical pulse over a sample of perpendicularly magnetized Co [1].
The electrical pulse is generated by exciting an Auston switch with a single laser pulse, and is transmitted through a coplanar
waveguide (CPW) towards the magnetic sample. By measuring the switching dynamics, it was found that the zero-crossing
of magnetization happens in about 70 ps [2]. Moreover, good agreement between data and a macrospin model coupled
with ultrafast heating brings forth two important points: (i) the reversal is greatly assisted by Joule heating, which weakens
the anisotropy field and thus decreases the energy cost of switching; and (ii) the switching process is coherent, as opposed
to the expected domain nucleation and propagation that has been reported for the case of ns pulses [3, 4].

Many aspects of SOT switching remain mysterious in the ps scale. Critical current density, essential for characterizing
energy efficiency, has been quantified so far only for pulse durations from the ms scale down to around 200 ps [5]. Regarding
materials, SOT switching has been observed in both ferromagnets [3–5] and ferrimagnets [6–8] in the ns scale, but the ps
scale has, to our knowledge, only been studied in perpendicularly magnetized Co [1, 2].

In this work we show SOT switching of both ferromagnetic and ferrimagnetic materials in the ps scale. We have prepared
various samples by magnetron sputtering on a substrate of LT-GaAs. In a similar fashion to Ref. [1], we have developed a
sample design including both an Auston switch and a magnetic stack embedded into a CPW. Moreover, we have established
a method of characterization of electrical pulses in terms of current and energy [9]. Figure 1 shows MOKE images of a
ferrimagnetic stack of Ta(3)Pt(5)Co(1)Gd(1)Ta(2)Pt(1), where the number between parentheses corresponds to thickness
in nm. This sample was shaped by UV lithography into a 4×6 µm2 film. We have found that magnetization reversal of this
sample can be achieved by lower current densities as compared to previously studied Co samples, in concordance as what
was reported in Ref. [6] for ns pulses.

Further details and comparison between different materials will be given during the presentation. These results can
help deepen our understanding of the SOT mechanism in the ps scale and also pave the way for new SOT-based spintronics
devices [10, 11].

Figure 1: MOKE images of single-pulse switching of CoGd by SOT, for different configurations of current (I) and external
in-plane magnetic field (Hx).
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Session 1, November 14th, 08h50 – 09h10

Capturing the full analytical dynamics of spin-torque
vortex oscillators from micromagnetic simulations

Simon de Wergifosse1, *, Chloé Chopin1, Anatole Moureaux1, and Flavio Abreu Araujo1

1Institute of Condensed Matter and Nanosciences, UCLouvain, Louvain-la-Neuve, Belgium
*simon.dewergifosse@uclouvain.be

The theoretical description of the spin-torque vortex oscillators dynamics has become an important research topic in
the nanomagnetism community, notably since their use in neuromorphic computing applications [1]. These nano-sized
cylindrical heterostructures are capable of emitting microwave signals when subjected to a spin-polarized current, caused
by sustained precessions of the magnetization in the free magnetic layer. In this configuration, the core of the magnetic
vortex, which is the ground state at these geometries, may oscillate (see Fig. 1a) at a given orbit and frequency (depending
on material parameters and the current magnitude) if the excitation is large enough. Until now, there have been two main
theoretical methods for studying these devices, namely micromagnetic simulations (MMS) and an approach based on the
Thiele equation [2]. However, none of these tools is both fast and accurate, which limits their relevance for any realistic
large-scale study.

(a)

h

XR

(b)

Resonant
regime

Resonant
regime

Steady-state oscillating
regime

Figure 1: a) Schematic of the free magnetic layer (of radius R and thickness h) of the magnetic tunnel junction under study,
presenting a vortex as magnetic ground state. The core gyration is triggered by an out-of-plane spin-polarized current. b)
Comparison of the gyrotropic frequency f STVO of the vortex core with respect to the imposed current density Jdc between
micromagnetic results, a fully analytical Thiele equation approach (TEA) and our data-driven Thiele equation approach
(DD-TEA, as in Ref. [3]).

Recently, we proposed an alternative to these techniques, called the data-driven Thiele equation approach (DD-TEA) [3].
Starting from a fully analytical TEA model [4], we have adjusted some of its terms based on the results of micromagnetic
simulations performed with mumax3 [5]. To do so, we carried out simulations at different currents and extracted the
frequency and orbital position of oscillation. The micromagnetic data enabled us to propose nonlinear corrections to the
gyrotropic and damping terms of the Thiele equation, resulting in a perfect agreement between the DD-TEA model and
simulations (see Fig. 1b). The major advantage of our model is that it reduces the number of equations to be solved between
each time step from thousands to just two (i.e. X= (X , Y ) coordinates of the vortex core). This achievement resulted in an
acceleration factor of about six orders of magnitude between MMS and DD-TEA. However, there was remaining room for
improvement, as a system of differential equations still had to be solved. In addition, around twenty simulations reaching
steady state had to be performed for sufficient fitting accuracy.

Here, we have been able to transform our problem mathematically so that we do not need to solve a system of ordinary
differential equation, similarly to what was obtained by Guslienko et al. [6]. Using the formalism of Bernoulli differential
equations, one can show that the harmonic oscillator problem we presented in Ref. [4] may be rewritten as

s(t) =
s0

n

r�
1+ sn

0
α/β

�
exp(−nαt)− sn

0
α/β

, (1)

where s(t) = |X|/R and s0 are the current and starting reduced vortex core positions, respectively, and α, β and n are
parameters depending on the current density Jdc that can be calculated from MMS. This transformation accelerates our
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method by a further three orders of magnitude, resulting in near-instantaneous solutions. Such a speed-up factor has
enabled us to apply our new model to neuromorphic applications of written digit recognition (using the MNIST database),
in the framework of reservoir computing, with state-of-the-art results [7].

Additionally, we propose an updated, more practical approach to calibrate our semi-analytical model. Instead of running
several simulations at a fixed current value, a few simulation are used, sweeping from low currents up to the vortex stability
limit. This alternative method offers a number of benefits. Firstly, it is no longer necessary to interpolate MMS results (as
was done in Ref. [3]) to obtain an accurate fit, as the extracted points are virtually continuous. Furthermore, a wider range
of excitation levels can be explored. Finally, from a more practical point of view, less post-processing is required as much
less simulations are performed.

In this study, we propose an improvement of our data-driven Thiele equation approach. Firstly, a mathematical trans-
formation of the dynamics helped us to jump from an accelerating factor of around 106 to 109, compared to micromagnetic
simulations (for equivalent precision). Furthermore, the calibration of our model was modified to make it simpler, using
a few micromagnetic simulations instead of dozens. More fundamentally, we believe that our approach could be gener-
alized to any type of application dealing with harmonic oscillators. As long as simplified equations of the dynamics and
either simulated or experimental data are available, a similar data-driven model could be developed to drastically speed up
simulations and leverage applications.
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Session 1, November 14th, 09h10 – 09h30

Spin Orbit Torque for Field-Free Switching in C3v
Crystals

Diego García Ovalle1, *, Armando Pezo1, and Aurélien Manchon1

1Aix-Marseille Université, CNRS, CINaM, Marseille, France
*diego-fernando.garcia-ovalle@univ-amu.fr

The manipulation of the local magnetization in a wide variety of magnetic materials is a matter of great attention, both
from the theoretical and experimental standpoints. In the latter case, particularly, the interest rely on the fabrication and
optimization of memory devices. Here, the magnetization switching in the absence of any external perturbation is a crucial
necessity in nanoelectronic applications.

In this work [1] we are focused on trigonal crystals, which belong to the C3v point group symmetry, that are able to
display unconventional spin-orbit torques, i.e, beyond the common field-like and damping-like contributions. By applying
the Invariant Theory [2] at the first order in electric field and up to the third order in magnetization components, we
demonstrate that several nonlinear contributions to the spin-orbit torque are allowed to emerge in trigonal crystals. We have
to remark the appearance of the so-called "3m" torque, which was previously identified in CuPt/CoPt heterostructures [3]
and Fe3GeTe2 [4], and it has been indicated as the precursor of field-free magnetization switching in trigonal ferromagnetic
heterostructures.

From the microscopic point of view, we also show the origin of these nonlinear contributions in the magnetization. In the
frame of a trigonal crystal, we first analyze a tight binding model where linear and cubic spin-orbit coupling contributions
are taken into account. We reveal that the origin of the spin-orbit torques presented here are related with the interplay
between the trigonal warping of the Fermi surface and a proper band filling of the system. An illustration of the Fermi
surface when the trigonal warping is active in the system is reported in Fig.1.

Figure 1: (Color online) Evolution of the Fermi surfaces with the band filling (lower in (a) and higher in (b)), for the cases
without (black lines) and with (red lines) cubic spin-orbit coupling when the magnetization is out-of plane.
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Finally, we corroborate our previous findings with realistic calculations performed in a CuPt/Co slab geometry, which
exhibits a strong trigonal warping as it is depicted in Fig. 2. We notice that the “3m” contribution can be as large as
the regular damping-like torque in these systems. Our article motivates further exploration of low-symmetry crystals for
magnetic memory devices.

Figure 2: (Color online) Spin texture of a selected band close to the Fermi level of CuPt(111)/Co slab geometry.
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Session 1, November 14th, 09h30 – 09h50

Direct STXM imaging of vortex dynamics in spin-torque
nano-oscillators

K. Ho1, *, S. Wittrock2, K. Litzius3, V. Deinhart2, C. Klose4, T. Sidiropoulos4, L. Kern4, D. Metternich2, A.
Jenkins5, L. Benetti5, R. Ferreira5, S. Finizio6, S. Wintz2, B. Pfau4, S. Eisebitt4, F. Büttner2,3, R.

Lebrun1, P. Bortolotti1, and V. Cros1

1Unité Mixte de Physique CNRS, Thales, Université Paris-Saclay, 91767, Palaiseau, France
2Helmholtz-Zentrum Berlin fur Materialien und Energie GmbH, Hahn-Meitner-Platz 1, 14109 Berlin,

Germany
3Institut für Physik, Universität Augsburg, Universitätsstraße 1, 86159 Augsburg

4Max Born Institute For Nonlinear Optics & Short Pulse Spectroscopy, Max-Born-Str. 2A, 12489 Berlin,
Germany

5International Iberian Nanotechnology Laboratory, Braga, Portugal
6 Paul Scherrer Institute, Forschungsstrasse 111, 5232 Villigen PSI, Switzerland

*katia.ho@cnrs-thales.fr

Spin torque nano-oscillators are circular-shaped MTJ devices in which radiofrequency magnetization oscillations can
be generated through spin-transfer effects. Due to their nonlinearity, these devices display interesting properties such as
spectral purity, frequency stability, and high tunability, opening up possibilities from wireless telecommunication to neu-
romorphic computing [1]. Our goal is to directly connect electrical measurements and the actual vortex core dynamics in
vortex-based spin-torque nano-oscillators (STVO).

To this aim, we image the spin transfer-induced gyrotropic magnetic vortex motion in state-of-the-art TMR-based STVO
devices by scanning transmission X-ray microscopy (STXM). The STXM technique allows probing volumic properties of
samples of a few hundred nm depth in the soft X-ray range [2]. The experiment has been performed at the MAXYMUS
beamline of the BESSY II Light Source where we focus a coherent X-ray beam down to the nanoscale range on state-of-the-
art MTJs. To our knowledge, these measurements are the first direct imaging of current-induced vortex dynamics in a fully
current-controlled device that is electrically characterized and in operando condition.

The studied devices are specific STVOs lithographed with very thin 50 nm thick SiO2 membranes that allow light trans-
mission through the device. The MTJ comprises magnetic layers separated by a crystalline magnesium oxide insulator. The
400 nm diameter nanopillar device, from bottom to top, can be summarized as the following stack: SAF/CoFe30/M gO/NiFe,
where the spin transfer vortex dynamics take place in the NiFe free layer.

By shining polarized light on STVOs, we get time-resolved magnetic static and dynamic imaging which can be unam-
biguously attributed to the vortex dynamics. Indeed, with complete control of the soft X-ray wavelength, it is possible to
access the L edges of Ni around 853.4 eV and contrast only the free layer of the MTJ. X-ray magnetic circular dichroism
(XMCD) effect is used as an imaging contrast method [3]. The in-plane magnetization distribution of the vortex tail is
depicted in Fig. 1 along the experimental setup schematic.

Figure 1: (a) Schematic of the experimental setup for electrical characterization of the STVO.
(b) XMCD resolved vortex distribution static scan at -2 mT in-plane for a 400 nm diameter nanopillar.
The in-plane magnetization is depicted by the contrast.
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We could successfully resolve vortex statically and dynamically in nanopillars. The latter is done by exciting the reso-
nance of the gyrotropic motion, the fundamental core vortex mode, with an RF signal close in frequency to the gyrotropic
mode. In addition, a small DC current is also applied to compensate for the natural damping and ensure we have the right
conditions for motion. This approach relates the vortex’s electrical response to its trajectory in the free layer in a dynamic
scan (Fig. 2). The magnetic contrast shows the vortex motion, which changes position through the 600 ms time resolution
snapshots, of which we depict four frames out of thirteen.

Figure 2: (a) Spindiode rectification voltage map at 254 mT and IDC = 1mA. The gyrotropic mode is
detected from Pr f > 1 dBm around 260 MHz.
(b) XMCD resolved vortex dynamic scan at +254.3 mT for four consecutive frames, with settings IDC =
1mA, Pr f = 4 dBm and f = 269.1 MHz. The sample was measured with an out-of-plane field with 30
degrees tilt.

In conclusion, we can directly link electrical RF measurements and dynamics by imaging the vortex motion. This suc-
cessful observation of time-resolved spin-torque-driven dynamics opens many possibilities for imaging even more complex
schemes, such as synchronization [4], C-state [5], or even oscillation death [6]. Theoretical predictions and models can be
directly related to images and interpreted. Moreover, observing complex dynamic states of the magnetization may be of
interest for novel neuromorphic-based computing [7].
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Session 1, November 14th, 09h50 – 10h10

Evidence of orbital current and orbital torques in
transition metals using oxidized Cu light element

Benjamin Bony1, *, Sachin Krishnia1, Sophie Collin1, Jean-Marie George1, Nicolas Reyren1, Vincent
Cros1, and Henri Jaffrès1

1Unité Mixte de Physique CNRS-Thales, Université Paris-Saclay, 91767 Palaiseau, France
*benjamin.bony@cnrs-thales.fr

The spin-orbit torque (SOT) has been widely investigated for both fundamental physics and for its industrial interest for
operating on the new generations of magnetic memories. To overcome the current limitations of SOT (energy efficiency,
use of heavy and scarce elements . . . ) a new approach has been proposed very recently [1], the orbital torque (OT) which
involves the generation of polarized orbital angular momentum (OAM). Two mechanisms can be at the origin of the orbital
current generation: the so-called orbital hall effect (OHE) [2] and the orbital Rashba-Edelstein effect (OREE) [3]. These
effects have been shown to largely overcome their analog pure spin effects. Recent works focused on the observation of a
torque enhancement due to a naturally oxidized copper layer on top of a conversion Pt layer [4] [5]. In these systems, a spin
current is generated in Pt through the spin Hall effect (SHE) and an additional orbital current is generated at the interface
between metallic Cu and CuOx by OREE. The orbital current is then converted into its counterpart spin-current by the large
spin-orbit coupling of Pt, and hence gives rise to a large enhancement of the magnetic torque, as measured on out-of-plane
insulating ferromagnet [4] together with an enhancement of spin injection detected through spin-pumping measurements
driven by ferromagnetic resonance (FMR) [5]. The main objectives of this study are twofold: i) Demonstrating that a
similar enhancement of magnetic torques also exists in case of transition metal ferromagnet e.g. cobalt, and ii) determining
experimentally the role of the orbital contribution in this enhancement.

The studied samples are Co(t)/Pt/Cu(3)* series deposited by dc magnetron sputtering with varying Co and Pt thick-
ness and using a 3 nm thick copper layer oxidized at ambient air to obtain Cu*. We carried out Pt thickness dependent
measurements on two series of polycrystalline samples: SiOx|Co(2)|Pt(t)|Cu*(3) is the orbital based system (Cu* stands
for naturally oxidized copper), and SiOx|Co(2)|Pt(t) as reference system involving only a pure spin contribution. To fully
characterize our system, we investigated the oxidation properties of Cu layer through resistivity measurements and X-ray
PhotoElectron Spectroscopy (XPS), that are both compatible with the presence of 1 nm of Cu and 2 nm of CuO. For torque
measurements (see Fig. 1a), we have performed 1st and 2nd order harmonic Hall voltage measurements, allowing the
extraction of damping-like (DL) effective field HDL . In addition, we have also measured the spin (and orbital) magnetore-
sistances, SMR (OMR) (see Fig. 1c).

Figure 1: a) Damping-like field dependence on Pt thickness and comparison between systems with and without generation
of orbital currents b) Damping-like efficiency dependence on Co thickness for 3 and 4 nm Pt c) Spin-hall magnetoresistance
dependence on platinum thickness.

We present the evolution of the DL vs Pt thickness for Co/Pt/Cu* (see Fig. 1a). We find undoubtedly a torque enhance-
ment by a factor of 2 around Pt 4 nm (see red points). In addition, we have also measured the DL torque in a series with only
Pt without Cu (see blue squares) and one with a capped reference with aluminum oxide. The sharp enhancement found in
the Co/Pt/Cu* samples is associated with the top Cu* layer and hence to the potential OREE at Cu/CuOx interface. The Pt
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thickness for which the maximum is observed is explained by the competition in Pt between the conversion from the orbital
current into spin current by spin-orbit interactions and the spin current loss in Pt. We also display the corresponding Hall
magnetoresistances (SMR and OMR) and their fits using our model (see Fig. 1c), acquired on the Co/Pt reference series
(blue points) together with the enhancement of the MR signal obtained on the Co/Pt/Cu* orbital series (red points). Such
enhancement of MR is compatible with an additional orbital current generated at the Cu/CuO interface.

For pure spin torques, the typical length scale is given by the spin decoherence length in the ferromagnet. For orbital
currents and torques, a different lengthscale might exist as recently shown for Ni [6]. Such lengthscales may then be
accessed via the Co thickness (tCo) dependence measurements involving the two spin and orbital additive contributions.
As the DL field is known to be inversely proportional to the FM thickness, both spin and orbital decoherence length may be
extracted by measuring the dependence of the integrated torque on tCo as obtained from the DL efficiency (see Eq. 1):

ξDL =
2eMs tCoHDL

ħh jc
(1)

with HDL the DL field, Ms the saturation magnetization and Jc the charge current density. Harmonic hall voltage measure-
ments have been carried out on Co(t)|Pt(3)|Cu(3)* and Co(t)|Pt(4)|Cu(3)* (see Fig. 1b). The values show an expected
evolution from SHE scaling with a short decoherence length (about 1 nm) at low thicknesses, indicating that the orbital
contribution doesn’t affect the torque lenghtscale in Co. To access a potential different lenght for the orbital contribution,
Co thickness dependence are currently performed on systems with only light elements : Co(t)|Cu*(3), in which we expect
a pure orbital torque to arise.

Our results support the occurrence of orbital currents generated in the naturally oxidized copper layer. Further works
are actually performed to disentangle the spin and orbital contribution : torque measurements on light metals-only systems
Co|Cu* with both cobalt and copper thickness dependence, as well as spin and orbital-pumping measurements driven by
FMR on Co/Pt/Cu* and Co/Pt series. The comparison between these measurements with the actual ones will allow us to
quantify precisely the magnitude of the orbital torques and the orbital injection efficiency in these orbital systems.
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Les effets magnétoélastiques dans les films minces et les nanostructures sont devenus un domaine de recherche majeur en
raison de leurs aspects fondamentaux et de leurs applications industrielles. Les études fondamentales et les applications liées
à ces effets ont été nombreuses au cours du dernier siècle, mais elles ont été relancées ces dernières années car elles sont de
plus en plus directement impliquées dans divers thèmes du nanomagnétisme tels que la straintronique, le flexomagnétisme
et le magnétisme curviligne. Les effets magnétoélastiques sont essentiellement liés à la magnétostriction et ont pour effet
d’une part de déformer un corps ferromagnétique sous l’application d’un champ magnétique (effet direct), et d’autre part
d’induire une anisotropie magnétique (magnétoélastique) lorsqu’une contrainte est appliquée à ce corps (effet indirect).
Dans notre travail, des objets ferromagnétiques soumis à des déformations élastiques ont été étudiés expérimentalement
et par des simulations numériques couplants micromagnétisme et mécanique du solide [1, 2]. Nous présentons à la fois
l’évolution temporelle de l’aimantation et l’analyse de fréquence modale de couches minces ferromagnétiques et de réseaux
de nanostructures. À cette fin, nous avons couplé numériquement les équations du micromagnétisme (incluant l’énergie
magnétoélastiques, équations 1-4) à celles de la mécanique des solides en incluant des conditions aux limites périodiques
dans Comsol Multiphysics®.

Fel =
1
2
ϵel : C : ϵel (1)

ϵel = ϵ − ϵm (2)

ϵ(u⃗) =
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 (4)

avec Fel l’énergie magnétoélastique, ϵel le tenseur des déformations élastiques, C le tenseur des constantes élastiques, ϵel

le tenseur des contraintes totales, ϵel le tenseur des contraintes d’origine magnétique, u⃗ le vecteur de déplacment, λ le
coefficient de magnétostriction et mi les composantes de l’aimantation normalisée.

Notre approche par la méthode des éléments finis a d’abord été évaluée pour une couche mince ferromagnétique mag-
nétostrictive (Ni60Fe40) en comparant les simulations à des mesures de résonnace ferromagnétique (RFM) ainsi qu’à un
modèle macrospin. Les résultats obtenus montrent à la fois une grande précision qualitative observée sur les profils spa-
tiaux des modes simulés (modes uniforme et stationnaires) ainsi qu’un accord remarquable permettant de reproduire les
évolutions des fréquences mesurées expérimentalement. La couche mince a par la suite été soumise à des déformations élas-
tiques contrôlées induites par l’application d’un champ électrique au sein d’un substrat ferroélectrique. Parallèlement à ces
simulations, une étude expérimentale (RFM in situ) a également été mené sur ce système, permettant de valider notre mod-
élisation. Ces essais de déformation biaxial ont montré l’apparition d’une anisotropie induite par le champ magnétoélastique
et reproduite avec beaucoup de précision par nos simulations numériques.

Nous avons par ailleurs étudié des réseaux de nanolignes modulées en largeur comme le montre l’image de microscopie
électronique de la figure 1-(a). Les expériences de RFM montrent la présence de cinq modes magnétostatiques principaux
dont les dépendances fréquentielles en fonction du champ sont présentées sur la figure 1-(b). Les simulations des modes
propres que nous avons réalisées en l’absence de déformations appliquées montrent un excellent accord avec les expériences
et les profils de modes magnétiques localisés sont comparables à des simulations réalisées par L.L. Xiong et al. [3] sur des
réseaux similaires. L’application de déformations mécaniques dans ces réseaux complexes engendre un champ de contrainte
héterogène induisant des disparités significatives sur la variation des fréquences des modes magnétiques comme le montre
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Figure 1: (a) Spectres de résonance ferromagnétique obtenus sur un réseau de nanolignes ferromagnétiques, images MEB
en insert. (b) Résultats expérimentaux et simulés montrant les fréquences des modes magnétiques en fonction du champ
magnétique. (c) Profils simulés des modes apparaissant sur (a) et (b). (d) Variation de la fréquence de ces modes en
présence (haut) et en l’absence (bas) d’un champ appliqué.

la figure 1-(d). Ces variations des énergies des modes magnétiques en fonction de la déformation appliquée permettent de
prévoir des applications où l’on pourrait contrôler de manière différenciée les énergies des ondes de spin en fonction des
contraintes élastiques appliquées (voir figure 1).

Cet outil de simulation a également été étoffé avec l’implémentation de l’aspect propagatif des ondes de spin nous
permettant à présent de simuler leur courbe de dispersion et leurs interactions potentielles avec les ondes acoustiques avec
l’ajout de la magnétostriction directe dynamique permettant ces interactions. Ces considérations nouvelles ouvrent la voie
vers l’étude de cristaux dits «magphoniques»dont les structures de bandes magnétiques sont facilement influençables par
application d’un champ magnétique ou de contraintes mécaniques ayant très peu d’influence sur les bandes phononiques.
Il est ainsi aisé de contrôler les bandes de fréquences interdites entre branches magnétiques et bandes phononiques.
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Surface acoustic waves (SAWs) are an effective method to act remotely on magnetic resonance (MR) by coupling coher-
ent phonon modes to collective magnetisation excitations called magnons (or spin-waves (SWs)) [1][2]. The physics behind
this interaction springs from magneto-elastic (ME) effective fields (bθ and bφ), that are entirely dependent on the magneto-
elastic constant (B2), the acoustic strain components (strain εi j and rotation ωi j) and the magnetisation orientation with
respect to the SAW wavevector (angle φM ) as given in equation (1). While previous works on SAW-MR have focused on the
resonant interaction far from the coercive field, given by the frequency and wave-vector matching: ( fSAW= fSW and kSAW=
kSW , respectively)[3][4][5], this work examines the often overlooked smaller contribution due to ubiquitous magnetic hys-
teresis for e.g as seen in Ni [6].

��be f f ec t ive
f ield
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��
B2
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sin2φM εx x

�
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To that end we investigate FeRh, a metallic alloy which, for near equal stochiometric ratio, undergoes a first-order
magneto-structural transition from the antiferromagnetic (AFM) to the ferromagnetic (FM) phase. This is accompanied by
a continuously varying percentage of FM phase and consequently coercive field value with temperature during the transition.
The eigen-frequencies of precession have been calculated by considering the absence/presence of the magnetic hysteresis
in the FeRh sample. From figure (1) it can been seen that in the case of a hysteresis, the SW frequency goes to zero GHz
at the coercive field value. The softening of the mode thus allows to study SAW-FeRh interaction near coercive fields. Field
scans at different temperatures allow to investigate SAW interaction with FM domains, FM-FM domain walls (DWs) and
the more exotic AFM-FM DWs.

Figure 1: Numerical calculation of the eigenfrequencies
at kSW = 0.654µm−1, in the case where the magnetic
hysteresis is considered/ignored. The horizontal lines
correspond to the three excitable SAW frequencies in
our device.

Figure 2: Schematic representation of the FeRh mesa on GaAs
substrate with a pair of IDT used to respectively excite and de-
tect the propagating SAW. kSAW is emitted parallel to the crys-
tallographic [110] direction of GaAs. Note that an external
magnetic field can be applied making an angle β to the SAW
wave-vector kSAW and the equilibrium magnetisation angle is
given as φM .

This work relies on a polycrystalline FeRh mesa of thickness (270 nm) on piezoelectric GaAs. Figure (2) is a schematic
representation of the experimental setup where RF bursts are fed to the left-IDT. SAWs are thus generated by piezoelectric
effect, travel across the [110]GaAs direction, interact with the metallic FeRh mesa and are detected by the right-IDT. The
variation of the SAW amplitude and velocity with either temperature and/or magnetic-field is continuously monitored. Fig-
ure (3) gives the variation of SAW amplitude with respect to field for three excitable frequencies at 130◦C, i.e. in the FM
phase. Hysteretic amplitude variations are maximum near the coercive field value, and increase with SAW frequency up to
−47 dB/cm at 889 MHz.

This is compatible with resonant ME interaction with frequency matching allowed by mode softening close to the coer-
cive field, see Fig.(1). In order to check this interpretation, we studied the SAW transmission for varying field angle in the
fully FM phase. Figure (4) shows that for field parallel and perpendicular to the SAW wavevector, the SAW transmission
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is identical, in contrast to what is expected from equation (1). This will be further modelled and discussed by taking into
consideration the polycrystallinity of the FeRh layer. Finally we shall present temperature-dependence results that will allow
to probe the influence of (i) the coercivity, (ii) the AFM-FM phase coexistence on ME interactions.

To sum up, this work puts into new perspective the importance of hysteresis on magneto-acoustics.

Figure 3: Magnetic field dependence of the transmitted
SAW amplitude at fixed field direction for excitable fSAW .
Zoomed inset excluding 889MHz.

Figure 4: Magnetic field dependence of the transmitted
SAW amplitude at varying orientation of the field, β , at
130◦C in the fully FM phase
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In the field of spintronics, there are many reasons to use molecular tunnel barriers in devices such as low cost, flexibility
and long spin life time in organic materials [1, 2]. What happens at the interfaces in these organic-inorganic hybrid systems
is so relevant to the final device properties that a word has been proposed for it: spinterface [3]. The discrete degree of
hybridization at the molecular levels explains the variation of the magneto-transport properties with respect to the type of
molecules and the nature of the interfaces [4]. To investigate such spinterface issues there is a need for very well-defined
interfaces, which can be obtained in ultra-high vacuum conditions (UHV). The aim of this work is to realize model hybrid
hetero-structures with a molecular monolayer as tunnel barrier between two ferromagnetic layers (Magnetic Tunnel Junc-
tion). Modifying the way molecules are linked to the substrate, the crystallographic orientation of the substrate and the
nature of the molecules are possible ways to modify the system spinterfaces. In this study, the grafting under UHV of the
molecular layer (1-hexadecanethiol molecules, noted C16MT) on epitaxial ferromagnetic Fe (001) electrodes has been stud-
ied using scanning tunneling microscopy (STM), X-ray and Ultraviolet photoelectron spectroscopy (XPS and UPS). To avoid
the formation of pinholes during deposition of the Co ferromagnetic top electrode of the junction, an original soft-landing
technique has been used, based on the condensation at low temperature of a Xe layer on the self-assembled monolayer
before metal deposition. The electrical homogeneity of the obtained junctions has been controlled from the micro to the
nanoscale by Ballistic Electron Emission Microscopy (BEEM) [5], displayed in Figure 1a, b. Investigation of the transport
measurements of these model MTJs has validated the success of BLAG technique in pinhole-free molecular junctions’ fabri-
cation, shown in Figure 1c. The magnetotransport properties of the named MTJs are in progress and will be confronted to
the precise analysis of the system bottom spinterface by spin-resolved IPES (Inverse PhotoEmission Spectroscopy).

Figure 1: Study of Au/Co/C16MT/GaAs(001) molecular MTJs. (a) STM, (b) BEEM image, 100x100nm². The homogeneity
of the BEEM current map demonstrates the absence of pinholes in micro-scale, (c) I-V curve from molecular MTJs of 25µm2

surface area, top-electrode deposited by BLAG and at RT. Nonlinear I-V curve illustrates electron tunneling through SAMs,
BLAG technique thus is validated for fabrication of large area pinhole-free junctions in macro-scale.
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The interplay between magnetism and superconductivity has been heavily studied during the past 30 years and recently
led to the concept of superconducting spintronic [1]. Nevertheless, proximity effect, inverse proximity effect or injection
of quasiparticles at superconductor/ferromagnet (S/F) interfaces have been essentially investigated in thick niobium or
aluminium-based heterostructures grown by sputtering [2] with critical temperatures (Tc) of the order of few Kelvin. S/F
stacks with a higher Tc, thinner layers and carefully tuned interfaces would enable the thorough exploration of new super-
conducting spintronic features, as well as the possible implementation in operating quantum devices.

We report here the growth of epitaxial MgB2 and MgB2/F films by Molecular Beam Epitaxy. Depending on the UHV
growth conditions, we are able to control either textured polycrystalline or single crystal MgB2 films, which are characterized
by RHEED, XPS, XRD and TEM, as shown in Fig. 1(a). The critical temperature is systematically higher for single crystalline
films and is measured for thicknesses as low as 5 nm (Fig. 1(b)). Tc reaches 30 K for films thicker than 15 nm, in good
agreement with references [3, 4]. Using BCS model, electrical transport and magnetic measurements reveal a typical
coherence length of about 5nm at the 0 K limit for the single crystalline MgB2 films.

Figure 1: a) High resolution TEM micrograph of a Al2O3/MgO/MgB2/Au structure. b) Critical temperature of single crystalline (black)
and textured (red) MgB2 thin films measured for various thicknesses.

The magnetic investigation under an external magnetic field applied perpendicular to the films has revealed an unex-
pected behaviour. This behaviour is characterized by an “inverted” loop (Fig. 2(a), 30K); i.e. an opposite moment compared
to the usual M(H) loop described by Bean or Kim-Ji models [5, 6]. This “inverted” state is stabilized by (i) reducing the
superconductor thickness and (ii) increasing the temperature. For the largest tested thickness (91nm) the “inverted” state is
observed for temperatures above 0.9Tc but it can extend down to 0.3Tc for a 13nm thick film. Neither structural character-
istics (textured or single crystalline) nor the chemical nature (MgB2, Nb or V) of the film significantly affect the occurrence
of this inverted loop. However, dynamical effects do have a clear influence: the measurements performed with a fast field
sweeping rate (15mT/s) tend to favour a “bulk-like” behaviour that eventually relaxes towards the “inverted” one, which is
itself favoured by a slow sweeping rate (0.1 mT/s). A phenomenological model based on the film geometry, will be proposed
to explain these original experimental data.
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Figure 2: a) SQUID-VSM measurement of an epitaxial MgB2 thin film (91nm) with a magnetic field applied along the normal. Mea-
surements are done with a field sweeping rate of 0.1 mT/s. At 26 K (black) crosses between M(H) parts (Hmax → Hmin & Hmin → Hmax)
indicate the coexistence of the “inverse” state with the bulk-like one, while at 30 K (red) only the “inverse” state remains (See Inset).
Blue arrows give the field sweeping direction. b) Temperature dependence of Gilbert damping for two MgB2/Ni80Fe20 stacks, with (blue,
empty symbols) and without (black, empty symbols) superconducting transition.

Besides, MgB2/F stacks have then been synthetized to explore their electronic properties. The growth of a Co or Permal-
loy layer on top of MgB2 only reduces Tc by about 1K and allows us to investigate MgB2/F heterostructures with critical
temperature close to or above 30K. Ferromagnetic Resonance (FMR) measurements have been performed, in order to probe
spin transport from F into MgB2. The temperature dependent magnetization damping of the F layer was extracted in two
stacks with different MgB2 thicknesses (Fig. 2(b)). As expected from previous works on Nb/Ni80Fe20 [5] and NbN/Ni80Fe20
[7], the channel of momentum loss in the MgB2 (25nm) layer is suppressed by the opening of the superconducting gap
below Tc. This leads to the drop of the damping parameter below Tc in MgB2/Ni80Fe20 bilayers (Fig. 2(b)). The drop is
absent for the sample with 4nm thick MgB2 layer that doesn’t exhibit any transition towards the superconducting state.

Our results on epitaxial MgB2-based thin films and heterostructures are promising for the investigation of superconduct-
ing spintronic physics over a large range of temperature and under temperatures larger than the H2 liquid-gaz transition.
They would also enable to study the properties related to this specific superconducting material in its single crystalline form.
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Quantum sensing technologies based on solid-state spin defects have already shown a huge potential to cover the
growing need for high-precision sensors [1], both for fundamental research and for industrial applications. The most
advanced quantum sensing platforms to date rely on optically- active spin defects embedded in three-dimensional (3D)
materials. A prime example is the nitrogen- vacancy (NV) center in diamond, which has already found a wide range
of applications in condensed matter physics, life sciences and geophysics [2]. Despite such success, NV-based quantum
sensing technologies still face several limitations that mainly result from the 3D structure of the diamond host matrix. They
include (i) a limited proximity between the quantum sensor and the target sample, which hampers its sensitivity, and (ii) the
inability to engineer ultrathin and flexible diamond layers, precluding an easy transfer of the quantum sensing unit onto the
samples to be probed as well as its integration into complex multifunctional devices. An emerging strategy to circumvent
these limitations consists in using spin defects embedded in a van der Waals crystal that could be exfoliated down to the
monolayer limit. Such a 2D quantum sensing foil would offer atomic-scale proximity to the probed sample together with an
increased versatility and flexibility for device integration.

Figure 1: Magnetic field imaging using spin defects in a vdW material (hBN)
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Hexagonal boron nitride (hBN) is currently the most promising van der Waals crystal for the design of quantum sensing
foils [3]. This insulating material, which can be easily exfoliated down to few atomic layers while maintaining chemical
stability, is extensively used for encapsulation of van der Waals heterostructures. Furthermore, hBN hosts a broad diversity
of optically-active point defects owing to its wide bandgap [4]. In this work, we focus on the negatively-charged boron-
vacancy (VB-) center in hBN, which features magneto-optical properties very similar to those of the NV defect in diamond,
with a spin triplet ground state whose electron spin resonance (ESR) frequencies can be measured via optically-detected
magnetic resonance methods at room temperature [5] [6]. We analyze the performances of thin hBN flakes doped with
VB- centers for quantitative magnetic field imaging in van der Waals heterostructures [7]. As a proof-of-concept, we
image the magnetic field produced by CrTe2, a van der Waals ferromagnet with a Curie temperature above 300 K. Finally,
we investigate how the properties of VB- centers evolve with the hBN thickness down to the monolayer limit [8].
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Diamond anvil cell (DAC) technology is widely used to study the electronic and magnetic properties of materials under
high pressure. These materials can exhibit exotic phases of matter such as superconductivity with record critical tempera-
tures. The main difficulty with using the DAC lies in the challenge to measure magnetic properties at high pressure (above
100 GPa) due to the minute sample size.

Here we report the implementation of high-pressure magnetometry by using diamond defects which are nitrogen-vacancy
(NV) centers. These atomic like quantum systems can be implanted into the tip of diamond anvils. Due to their spin
properties, NV centers are highly sensitive magnetic probes and their atomic size can allow for sub-micrometer spatial
resolution. Using a customized optical microscope, we observe the spin dependent luminescence of NV centers, in order
to map the magnetic field at the diamond anvil tip. The expulsion of magnetic field lines due to the Meissner effect in a
superconductor results in a clear drop of the magnetic field in the close vicinity of the sample, where the NV sensors are
located [1]. This detection provides an unambiguous diagnosis of superconductivity that does not rely on questionable
electrical contacts or indirect probes once implemented at high pressure. This procedure can be performed on any magnetic
sample and is compatible with synchrotron X-ray diffraction for structural characterization [2].
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Figure 1: (a) Schematic cross-section of the location of NV centers implanted as a layer below the anvil culet surface in the
DAC. (b) SEM of the diamond anvil tip with the micropillar that ensures hydrostatic compression of the NV centers. (c)
ODMR spectrum of the NV centers as a function of pressure and applied magnetic field.

We demonstrate that NV magnetic micro-sensing can be implemented above 100 GPa by ensuring a quasi-hydrostatic
stress environment for the NV centers [3]. This hydrostatic environment is obtained by machining a mircopillar on the
tip of the anvil, as shown is Figure 1 (b). This result increases the pressure range of NV micro-sensing, with a magnetic
dependence of the Zeeman effect independant of pressure. Our results enable the undisputable detection of the Meissner
effect in super-hydrides that is currently under stifling debate.

28



References

[1] M. Lesik, T. Plisson, L. Toraille, et al. Magnetic measurements on micrometer-sized samples under high pressure using
designed NV centers. Science 366, 1359–1362 (2019).

[2] L.Toraille, A. Hilberer, T. Plisson, et al. Combined synchrotron x-ray diffraction and NV diamond magnetic microscopy
measurements at high pressure. New Journal of Physics 22, 103063 (2020).

[3] A. Hilberer, L. Toraille, C. Dailledouze, et al. Enabling quantum sensing under extreme pressure: Nitrogen-vacancy
magnetometry up to 130 GPa. Physical Review B 107, L220102 (2023).

29



Session 3: Applications
14h30 – 16h30

Chair: Richard Mattana and Laurent Ranno

14h30 – 14h50
Mathieu
Lamblin

IPCMS Quantum Spintronic Energy Harvester page 31

14h50 – 15h10 Andrea Visona
LTM
SPINTEC

Cellular Interaction with Low-Frequency
-Vibrating Magnetic Nanoparticles
in Bio-Mimetic Mechanical Environment

page 33

15h10 – 15h30 Tianwen Huang GEEPS
Investigation of stress-induced self-
biased magnetoelectric composites for
powering implanted biomedical devices

page 35

15h30 – 15h50 Erwan Plouet
UMR
CNRS/Thales

Fully Parallel Spintronic Convolutional
Layer with Frequency Interconnectivity

page 37

15h50 – 16h10 Lucile Soumah SPINTEC
Scalable Superparamagnetic Tunnel
Junctions for Unconventional
Computing

page 39

16h10 – 16h30
Valentin
Desbuis

IJL
Low-energy spin manipulation in the
molecular field of a magnetic thin film

page 41

30



Session 3, November 14th, 14h30 – 14h50

Quantum Spintronic Energy Harvester
Mathieu Lamblin1, *, Bhavishya Chowrira1, Lalit Kandpal1, Talha Zafar1, Benoit Gobaut1, Victor Da

Costa1, Wolfgang Weber1, Samy Boukari1, Michel Hehn2, Bertrand Vileno3, Daniel Lacour2, and
Martin Bowen1, *

1Institut de Physique et Chimie des Matériaux de Strasbourg, UMR 7504 CNRS, Université de Strasbourg,
23 Rue du Lœss, BP 43, 67034 Strasbourg, France

2Institut Jean Lamour UMR 7198 CNRS Université de Lorraine BP 70239, Vandœuvre les Nancy 54506,
France

3Institut de Chimie UMR 7177 CNRS Université de Strasbourg, 4 Rue Blaise Pascal, CS 90032, Strasbourg
67081, France

*mathieu.lamblin@ipcms.unistra.fr, bowen@unistra.fr

Quantum heat engines have attracted extensive research as they give us a glimpse of abundant, continuous, dense,
microscopic and environmentally friendly power sources [1]. Recent theory [2] and experimentation [3] have showcased
how to use quantum features in order to harvest thermal energy stored as quantum heat and convert it into usable work.
So far, this has required cumbersome external energy sources [4], therefore nullifying their potential standalone use cases.

Our team has proposed a spintronic implementation of such an engine that can operate autonomously by rectifying the
quantum fluctuations of a spin chain trapped inside a ferromagnetic tunnel junction (see Figure. 1) [5]. We will describe
additional experiments, in which the spin chain is borne by the Co paramagnetic centers of phthalocyanine molecules, and
is maintained in a coherent superposition of states thanks to electron-spin selecting Fe/C60 interfaces [6]. This generates a
spontaneous current across several molecular nanodevices.

To explain these results, we will introduce the spintronic engine and give insight towards its quantum description in
terms of transport, spin, thermodynamics and quantum resources. The design of our spintronic implementation will be
presented along with details showing the key structural elements that enable its quantum advantage. An overview on the
magneto-transport experimental results will be shown, featuring details regarding its spintronic signatures, power output
and thermal response [6]. This presentation will be followed by a brief description of the theoretical model under study,
which aims at explaining the spontaneous current generation we observe in our device [7].

Two complementary approaches will be considered. A first description relies on the energy and negentropy provided
by autonomous measurement back-action: the operation of the engine is split into two strokes: a thermalizing stroke that
releases electrical work into the bath thanks to the relaxation of the system, followed by a measurement stroke that energizes
the system by killing the entanglement present in the steady-state. The second approach models the device as a continuous
engine that produces work thanks to a bosonic drive resulting from self-sustained molecular vibrations [7].

Figure 1: Schematic of the spintronic engine (left) and table comparing the power densities of conventional energy har-
vesters with our engine (right) [5]
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Nanotechnologies have the potential of reshaping the biomedical scene, opening the doors to novel approaches for
therapies and detection techniques. Among these, magnetic nanoparticles (MNPs) have already shown to be very promising
thanks to their ability of being controlled remotely through magnetic fields. Indeed, applications which space in all domains
of biomedical fields have risen in the past years, such as disease treatment, imaging contrast agent, drug delivery and
regenerative medicine.

In particular, vibrating MNPs can can be used to exert very local forces and transfer mechanical energy at cellular scale.
They can be exploited to target mechanosensitive proteins and trigger their associated mechanotransduction processes,
influencing therefore cellular life. For instance, it was shown that low frequency vibrating particles (few Hz range) can
induce apoptosis in cancer cells [1], [2] or increase insulin release in pancreatic cells [3].

Indeed, in the past decades more and more knowledge has been provided about the mechano-sensitivity of cells with
respect of the surrounding environment. A constant exchange of forces between the cell and the extracellular matrix (ECM)
or between neighbouring cells is responsible of different cellular functions such as motility, proliferation, shape modifications
and even gene and protein expression [4]. For this reason, it has become clear that studying cell behaviour on traditional
culture substrate, such as plastic and glass, could mislead the preliminary in vitro tests, due to the huge difference in
mechanical properties compared to almost all physiological environments (Stiffness of GPa instead of kPa). Very viable
options to mimic mechanical properties of the ECM are Hydrogels; in particular Polyacrylamide gels (PAAG) allow different
level of polymerisation for a fine tuning of the Young’s modulus and easy protein coating. [5]

The Nanoparticles we use are called Vortex Micro-disks because of their magnetic and geometrical structure as shown in
figure (1). They are fabricated by a "top-down approach" (lithography/metal deposition/lift-off) for a fine shape and size
control. The design of the particles was optimised in order to maximise the transferable mechanical energy under vibration,
their biocompatibility and dispersion [1].

We present a study of the interaction of the cells with MNPs, either static or vibrating, as a function of substrate stiffness,
the cells are grown on. Two cell types have been studied: U87 Glioblastoma human cancer cells and NIH 3T3 mice fibroblast
to compare the behaviour of two very standard representatives of cell types, cancer and healthy one respectively.

Figure 1: On the left, drawing of the Vortex micro-disks geometrical and magnetic structure and SEM images of the particles.
On the right, epifluorescence image of transfected U87 (GFP) that have been incubated with MNPs. Scale bar is 25µm.

The interaction of cell with magnetic nanoparticles in absence of field was deeply studied in order to be able to decouple
the effect of the simple presence of MNPs to their field-induced vibration. In particular, it was shown that cellular metabolic
activity and proliferation is altered differently when exposed to MNPs depending on the mechanical properties of substrates
and the cell type.
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Concerning the Magneto-mechanical stimulation, based on previous studies [6], amplitude, duration and frequency of
the field alongside particles concentration proved to play an important role in the cells aftermaths. The parameters of the
magneto-mechanical stimulation have been therefore chosen such that both large effects (like cell death) and more subtle
ones (like force rearrangement, difference in motility) could be achieved and evaluated.
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Magnetoelectric (ME) laminate composites are notable heterostructures that interrelate magnetostrictive and piezoelec-
tric substances via elastic strain, enabling electric polarization in response to a magnetic field or vice versa. Their unique
properties make them suitable for several engineering applications including sensors, actuators, and particularly as energy
transducers for wirelessly powering implanted biomedical devices [1]. Conventionally, the ME response is optimal under a
small dynamic magnetic signal Hac around a fixed static bias magnetic field HDC . In this biomedical context, recent articles
have shown the feasibility that an embedded sensor chip can be powered by a neighbouring ME resonator activated, through
the human body by a weak dynamic magnetic field working in a frequency range that is transparent to the human body
(hundreds of kHz), while respecting the exposure limit value (1 Oe). However, the requirement of HDC (tipically hundreds
of Oe) necessitates the use of permanent magnets, presenting a significant drawback for the development of implantable
electronic devices. To address this issue, the self-biased ME composites that can induce a significant ME response in the
absence of HDC are emerging as an attractive alternative [2].

This study aims to elucidate the origin of the observed self-biased ME behavoir by comparing two distinct magnetoelectric
trilayer composites Ni/(YXl)36◦ LiNbO3/Ni (20×5×0.1 mm3) and Ni/PZT-5H/Ni (11×5×0.22 mm3), with approximately
10 µm thick Ni films deposited using RF sputtering. The ME performance investigation predominantly concentrates on the
ME Longitudinal-Transverse (L-T) operational mode, illustrated in Fig. 1a, where longitudinal magnetic excitation is applied,
consequently inducing a transversal electric voltage V , and the efficiency of the ME composites is commonly measured using
the magnetoelectric coefficient expressed as αM E = δV/(δHac · tp), where tp is the thickness of the piezoelectric layer. As
depicted in Fig. 1b, the Ni/(YXl)36◦ LiNbO3/Ni composite demonstrates a self-biased behavior with a high remanent ME
coefficient, in contrast to the Ni/PZT-5H/Ni composite.

(a) (b)

Figure 1: (a) The studied ME composite is excited in L-T mode. (b) Measurements of the ME coefficient in quasi-static
regime.

The ME coupling combines both piezomagnetic and piezoelectric effects, with the assumption that both effects exhibit
linearity. Based on the approach presented in [3], the ME coefficient can be expressed as the multiplication of gradients
corresponding to piezomagnetic and piezoelectric effects. Consequently, the magnetic field dependence of the ME coefficient
can be described as αE ∝ ∂ S

∂ H =
∂ λ
∂ H , where λ represents the strain resulting from magnetostriction. Considering that λ is
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proportional to M2, we arrive at the relation αE∝ ∂M2

∂ H , which connects the ME response to the magnitude of magnetization.
As shown in Fig. 2a, we corroborate the hypothesis that the observed variations in magnetic behavior between ME trilayer
composites and the isolated Ni films can be attributed to thermal stress induced by the cooling process subsequent to the
sputtering procedure [4]. These residual thermal stresses can be generally expressed as Eq. 1 [5]. This hypothesis is
supported by in-plane X-ray diffraction measurements, which confirmed the measurements of changes in atomic spacing of
the nickel film. In conclusion, we can attribute the self-biased ME behavior to the change in magnetic behavior of the Ni
films induced by stress.

σr,ii = Ce,iikl(αs −α f )kl △ T (1)

(a) (b)

Figure 2: (a) M-H curves of trilayer composites and their isolated Ni. (b) Comparison between ME measurement and
simulation of Ni/PZT-5H/Ni composite in quasi-static regime

Moreover, we have developed a numerical code using the Finite Element Method (FEM) as a versatile analysis tool for
multiphysics simulations. In order to accurately capture the magnetoelastic coupling of thin magnetostrictive structures,
we employ the nodal shell element approach. Additionally, we enhance the FEM formulation by incorporating a simplified
magnetoelastic anhysteretic model to accurately represent the nonlinear behavior of the nickel (Ni) material. An example
simulation result of Ni/PZT-5H/Ni in quasi-static regime as depicted in the Fig. 2b, exhibits a good accordance with the
measurements. The primary goal is to provide a valuable tool that can facilitate our ongoing research on combining Ni with
different crystalline cuts of LiNbO3 or diverse piezoelectric materials, with the aim of achieving improved performance in
the field of self-biased ME effects
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Convolutional neural networks (CNNs) are state of the art algorithms for image processing. Despite a small number of
synaptic weights, CNNs remain computationally costly to train in software due to the sequential application of the convolu-
tional filter over the input. The field of neuromorphic spintronics offers the possibility of new promising parallel architectures
that would perform a convolution in a single time step. Previously it has been demonstrated that the spin diode effect can
be used to selectively apply a synaptic weight on a radiofrequency signal using frequency selectivity to address each device
independently [1][2]. Here we go a step beyond, to show an experimental implementation of a convolutional layer able
to calculate the result of a complete convolution in a single time step by exploiting the frequency domain as an additional
dimension.

We design a compact architecture of 3 radio-frequency waveguides integrating each 3 spin-diodes connected in series.
This architecture performs a padded convolution between a 3-pixels filter and a 5-pixels input. Inputs are represented by
RF signals and are selectively processed by spin diodes at the matching frequency as represented by colors in Figure 1, the
values of the filter are encoded by a small frequency detuning between the inputs and the spin-diodes resonance. Frequency
selectivity enables us to produce each output with a single line geometry. Three strip lines in a crossbar configuration are
implemented to write simultaneously the three weight values shared by the RF waveguides. This architecture exploits the
intrinsic weight redundancy of convolutions to compute three outputs in parallel, instead of sequentially. The proposed

Figure 1: RF convolutional architecture

architecture enables us to both reduce the size and scaling of this hardware implementation while, at the same time,
performing the convolution in one timestep contrary to previous time-multiplexed implementations. A potential decrease
by one order of magnitude in energy consumption compared to current GPUs and two orders of magnitude in operating
latency is envisioned upon scaling down of the technology [3]. This proof of concept of a spintronic CNN presented here,
opens the path to the development of deep spintronic neural networks that can exploit the power of convolutional layers in
a fully parallel, compact, and energy efficient way.
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Figure 2: Convolution performed to enhance vertical edges
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Magnetic tunnel junctions (MTJ), initially developed as memory storage units, have recently appeared as promising
stochastic building blocks for cognitive computing [1]. An MTJ consists of two ferromagnetic layers separated by a thin oxide
layer. The relative orientation of the magnetization of these two ferromagnetic layers forms two stable states corresponding
to antiparallel or parallel alignment of the magnetization. Electrical reading of these two stable states is achieved thanks
to the tunneling-magnetoresistive effect, leading to two binary state either 0 or 1. The energy barrier separating those
two energy minimums is defined relatively to the thermal energy kBT ( where kB is Boltzmann’s constant and T=300 K
is the room temperature). A significant energy barrier (>40 kBT) between the two memory states enables to reach the
required retention time (typically in the order of 10 years) for nonvolatile applications. When the energy barriers are less
than 15 kBT, thermal fluctuations at room temperature lead to random magnetization switching between the two stable
configurations and the junction is called superparamagnetic tunnel junction (SMTJ). While magnetic fluctuations in SMTJs
are truly random, the average time spent in each stable configuration (mean dwell time) can be tuned over a wide range
of time scale (ms-ns) in a deterministic way through applied current or magnetic field. It has been shown that SMTJs
with in-plane magnetic easy axis fluctuate at the nanosecond time scale when careful engineering of the energy barrier is
performed [2]. However, such in-plane structures suffer from major challenges when it comes to downscaling because of
their large sensitivity to small-size patterning (pillar edges) leading to important device-to-device variability’s. In addition,
the energy efficiency of in-plane structures still remains limited by their critical switching currents which are larger than the
one observed in their perpendicular counterparts.

We tackle here the scalability and energy consumption challenges of currently developed SMTJs by engineering new
magnetic structures having perpendicular magnetic easy axis and ultra low energy barriers. By careful tuning of the thick-
nesses within the multilayer magnetic stack, we obtained ultra-low values for the energy barrier height (<2 kBT) and report
for the first time nanosecond timescale fluctuations in perpendicular SMTJs. In order to explain the observed fast magnetic
fluctuations, we develop a new analysis method based on the estimation of the free-layer magnetization energy landscape
which enable us to obtain experimentally the attempt time, corresponding to the characteristic timescale constant of the
fluctuation, often empirically chosen (0.1-1 ns) in most of the work on SMTJs [2, 3]. Our result doesn’t only open new
avenues for building low-energy, compact and fast networks of superparamagnetic tunnel junctions but also enables exper-
imentalists to address the dynamics of SMTJs more quantitatively, which is crucial for using them as stochastic building
blocks for cognitive computing.

We fabricated perpendicular SMTJs with a stack structure composed of two uniformly out-of-plane magnetized ferro-
magnetic (pinned and free) layers (CoFeB) separated by an oxide layer (MgO), and a perpendicular synthetic ferrimagnet
composed of 2 stacks of Co/Pt multilayers antiferromagnetically coupled through RKKY interaction. The reference layer is
pinned by direct exchange coupling with the synthetic ferrimagnet. The MTJ stack is then nanofabricated and patterned
in 50 nm circular nanopillar with variation of resistance values from antiparallel to parallel configuration close to 70 %
at room temperature and a resistance-area product of 10 Ω µm2. A wedge structure on the thickness of the CoFeB free
layer is used to tune the energy barrier through the interfacial anisotropy term which is inversely proportional to the CoFeB
free layer thickness. For the optimized thicknesses conditions, the free-layer magnetization of the SMTJ switches randomly
between antiparallel and parallel state due to thermal fluctuations without any external current or field stimuli. For the
fabricated SMTJs, we record voltage time traces corresponding to stochastic magnetization fluctuations. The analysis of the
recorded voltage-time traces combined with its corresponding auto-correlation function (Fig.1(a-b)), indicates nanosecond
range stochastic fluctuations which is not yet reported for perpendicular SMTJs in the literature. Interestingly, applying a
larger DC current ( 30µA) compensates through spin transfer torque the absence of an applied magnetic field which enables
zero field SMTJ operation in perpendicular structures.

In order to extract the mean dwell time of the thermally induced fluctuations with satisfactory statistical confidence,
we record time traces with a sufficiently large number of transitions (>105). The probability density function is retrieved
from the measured voltage-time trace. Assuming that the SMTJ is at thermal bath equilibrium, the extracted probability is
expected to follow a Boltzmann distribution, which enables the estimation of the energy barrier height in the units of kBT
(Fig.1(c)). From our experimental voltage-time traces, we combine the estimated energy barrier and extracted mean dwell
times in the modified Néel-Brown model, leading to a straightforward evaluation of the attempt time from experiments
(Fig.1(c)). The proposed evaluation method offers a versatile approach for experimentalists, eliminating the need for
temperature-dependent measurements often used in the literature [4]. Using different current operating points (Fig.1(d)),
we evidence that, contrary to the usual assumption of a constant attempt time [3], the evaluated attempt time depends
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Figure 1: (a) Voltage-time trace measured at zero applied external field in a perpendicular SMTJ with ultra-low energy
barrier ( < 5kBT ) the time scale of the fluctuation : 20 ns is measured through the (b)auto-correlation function of the
recorded time trace. (c)Energy landscape of a perpendicular-SMTJ obtained from the probability density function. (d)
Mean dwell time τ vs normalized energy barrier ∆ for a fixed applied DC current of -25 µA fitted with the modified Néel
Brown’s model enables to estimate the attempt time τ0=22 ns.(e) Evolution of the evaluated attempt time with the DC
applied current.

on the current, which enables reducing the time scale of the fluctuations even more. We believe that our optimization of
perpendicular structures operating in the superparamagnetic regime at ultra-low applied DC current and at zero magnetic
field opens a new path to integrability and scaling down of spintronic stochastic nanodevices crucial for unconventional
computing schemes.
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The “conventional” collinear spin filtering effect demonstrated that electronic spin can support modern electronic de-
vices, using spin valves [1, 2] or magnetic tunnel junctions [3, 4]. Yet, the spin-transfer torque effect [5], describing
interactions between an electronic spin and magnetizations in such devices, induces change in the spin direction during
angular momentum transfer. Therefore, control of the electron spin direction and its injection into an adjacent layer is
a milestone for next-generation electronics. The presence of an electric field or a magnetic field can lead to a precession
of the electronic spin. From the first spin transistor proposed by Datta and Das [6], several experiments showed that the
precession effect could be triggered in different materials. The first measurement of spin precession in ferromagnets was
demonstrated by D. Oberli et al. [7] for high energy electrons in the internal molecular field of the ferromagnetic mate-
rial. This field estimated at several tens of Tesla [8] opens the door for sharp control of the electron spin direction at the
nanometric scale in multilayered devices. Only a recent demonstration of spin precession could be done at low energies,
compatible with applications in vertical injection geometry [9].

The lab-on-chip used for this study is based on a non-collinear magnetizations structure (Fig.1 left). A spin-polarized
electron beam entering a multilayered system is affected by the ferromagnetic layer magnetization MAL . The polariza-
tion vector P will exhibit a precessional motion around MAL described by the precession angle ε The reorientation of the
polarization vector towards MAL is given by the filtering angle θ .

Figure 1: Left : precession and filtering angles for a beam of spin polarized electrons. Right : energy landscape experienced
by the electrons. The vectors represent the polarization of the polarization layer, the active precession layer and the analyzer,
from left to right.

This injection and the control of the spin energy is done by a MgO tunnel barrier [4] and by the use of crossed mag-
netizations geometry for an applied bias voltage [9]. Both θ and ε are analyzed through the GMR effect [1] occurring in
the active layer / Cu / analyzer spin valve (blue / orange / green rectangles in Fig.1 - right). The use of a tunnel barrier
at the injection and a Schottky diode at the collection of the spin ensure that the collected electrons in the semiconductor
have always an energy higher than 0.7 eV (height of the Schottky barrier) and that collected electrons cross the Cu/Si with
in an acceptance angle of roughly 4.5° (at an energy of 1 eV). As a result, the collected electrons in Si move ballistically
across the spin valve with a trajectory perpendicular to the multilayer interfaces [9]. The resulting all-solid-state device is
a magnetic tunnel transistor (MTT) architecture and is needed to test the precession angles (Fig.1 - right) at low energies.
However, only the top magnetic tunnel junction (MTJ) is needed for the spin injection and has been shown to be integrated
in all CMOS processes, compatible with applications, in vertical injection geometry to reduce the device size.
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The typical stack used for this study is as follows:

Pt(5)/IrMn (7.5)/Co(2)/Ta(0.5)/CoFeB(2)/MgO(2.5)/X(y)/Cu(3.5)/[Ni(0.6)/Co(0.2)]×5/Ni(0.6)/Cu(5)/Ta(1)/Cu(5)//Si(100),

where numbers in brackets indicate the layers thicknesses in nanometer. The multilayer is grown by sputtering on a HF
cleaned Si substrate [10]. The CoFeB layer is the polarizer and X(y) is the active precession layer. The [Ni(0.6)/Co(0.2)]×5/Ni(0.6)
multilayer represents the analyzer and has its magnetization perpendicular to the film plane. The optimization of the
three-dimensional magnetic configuration needed for the precession experiment has been done in [11]. Both material
and thickness of the active precession layer can be changed as long as its magnetization lies in-plane with respect to the
three-dimensional configuration of the structure (Fig.1 left). Depending on the nature of the active layer material, different
parameters (thickness, temperature, energy) can be used to achieve full manipulation of the spin precession. The aim of
this study is to demonstrate that engineering of the molecular field can lead to controlled spin-injection in nanometric scale
devices.

The figure of merit S, function of experimentally available quantities, can be related to spin precession with the product
S = sin(ε)cos(θ ) where ε and θ are the angles defined in Fig.1 right. The precession angle ε depends on all previously
mentioned parameters. Pioneer study of C. Vautrin et al. [9] showed variation of the spin precession angle in CoFeB for
different layer thicknesses with a fixed molecular field. Pursing this work, we designed two magnetic materials to engi-
neer molecular fields in order to control spin-injection with temperature: CoAl and CoCu. Tuning the molecular field with
temperature for both materials leads to a precession angle variation, related to the materials magnetic properties (Fig.2).

Figure 2: Spin precession signal as a function of a parameter of interest for three different active layer material (from left
to right: CoFeB, CoAl, CoCu). A period of the signal corresponds to a 360° rotation of the spin.
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Magnetic tunnel junctions are increasingly used in embedded non-volatile memory applications and are promising build-
ing blocks for implementing new circuits for compact and energy-efficient unconventional computing [1]. These nanoscale
devices consist of two ferromagnetic layers separated by a thin insulating tunneling barrier. The relative orientations of the
magnetization of the two magnetic layers form two stable configurations with parallel (P) or antiparallel (AP) magnetiza-
tions. Applying voltages to these nanojunctions results in spin-polarized tunnel currents that exert a spin transfer torque on
the magnetizations. At sufficiently high voltages, the energy barrier between the two configurations is overcome, resulting
in a magnetization switch and allowing the writing of the memory. Collective behavior resulting from the coupling between
such SMTJs could enable hardware implementation of cognitive computing systems in which randomness is a low-cost way
to encode and explore available information states.

To achieve stable storage of the information over many years, as required for non-volatile applications, the energy
barrier between the two memory states must be large, i.e., greater than 40kT , where k is Boltzmann’s constant and T is the
working temperature in Kelvin (T = 300 K). Reducing the energy barrier leads to an exponential reduction in storage time.
For energy barriers lower than≃ 15kT , thermal fluctuations at room temperature lead to random changes in magnetization
between the two stable configurations time scales ranging from 10 µs to 100 ms. A magnetic element whose magnetic
configuration fluctuates due to a small energy barrier is called a superparamagnetic tunnel junction (SMTJ).

Most reported interaction schemes for two or more SMTJs use protocols that require additional peripheral circuitry [2,
3] or finely calibrated external stimuli [4]. This circuitry complicates the development of large generalized networks. Here
we couple SMTJs using linear circuit elements. We believe such coupling can provide a more robust, less complicated,
and more compact basis for future exploration of large SMTJ networks needed for deploying in hardware energy-efficient
stochastic neural networks [5] as well as for Ising-model-based approaches to optimization problems [6].

We choose to work with SMTJs because of better scaling-down (below 30 nm diameter) perspectives and larger mag-
netoresistance effects available with the considered structure, a key parameter for enhanced coupling strength between
SMTJs. More precisely, we study perpendicular SMTJs with the following composition: Si substrate / SiO2 / TaN /
[Co(0.5)/Pt(0.2)]6 /Ru(0.8)/ [Co(0.6)/Pt(0.2)]3 / Ta(0.2) / Co(0.9) / W(0.25) / CoFeB(1) /MgO(0.8) / CoFeB(1.4)/
W(0.3) / CoFeB(0.5) / MgO(0.75) / Ta(150) /Ru(8). Numbers in parentheses represent thicknesses in nanometers and
numbers adjacent to square brackets indicate the number of bilayer repeats. The devices are nearly circular with nominal
diameters of 50 nm. Their tunneling magnetoresistance (TMR) value is close to 120 % at room temperature, and they have
a resistance-area product of 10Ωµm2.

We demonstrate bipolar coupling of superparamagnetic tunnel junctions using a straightforward electrical circuit to
establish an electrical interaction between two SMTJs. Bipolar coupling implies that two interacting SMTJs can couple
both preferentially ferromagnetically [favoring (P,P) and (AP,AP)] or antiferromagnetically [favoring (P,AP) and (AP,P)]. The
electrical setup is shown in Fig. 1(e). Two parallel coupled SMTJs are connected in series with a resistance R0 = 3400Ω
and the voltage source. We monitor the shared voltage between the two SMTJs with an oscilloscope. From the measured
voltage, we can determine the configuration of the two SMTJs and the time they spend in these configurations. Fig. 1(a)
and (c) show time-voltage traces of the circuit. We extract the statistics of the four states corresponding to the system’s
four possible SMTJ resistance combinations; (AP, AP), (P, P), (AP, P), and (P, AP) from the histograms shown in Fig. 1(b)
and (d). Extracting the probabilities of the four joint configuration states over a range of applied DC voltages allows us to
characterize the coupling. We compute the t = 0 Pearson cross-correlation C(0), which depends only on the probabilities
that can be easily extracted from the histograms, using the analysis developed in [7]. Fig. 1(e) shows the cross-correlation
evaluated as a function of the applied voltage Vdc in the circuit. For lower voltages, we start with negative coupling that can
reach -58 % cross-correlation, for the largest value. And for bigger voltages, we observed positive coupling; that can reach
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Figure 1: (a),(b),(c),(d) Time trace and histogram of the voltage of two coupled SMTJs for Vdc = 1710 mV and Vdc =
1910mV, respectively. (e) Setup of coupling 2 SMTJs and the evolution of the t = 0 Pearson cross-correlation C(0) extracted
for the coupled SMTJ system as a function of the applied DC voltage.

38 % cross-correlation. This is almost two times larger than the coupling demonstrated previously in the literature [3, 7].
This evolution as a function of voltage can be seen as a transition from antiferromagnetic to ferromagnetic coupling.

Obtaining a bipolar coupling that can be tuned externally between SMTJs is a crucial feature for many probabilistic
computing schemes opening a path towards the hardware implementation of energy-based models such as Boltzmann
machines, invertible logic networks [2], or stochastic neural network schemes [5].
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Magnetic Tunnel junctions (MTJs) are often used as magnetic sensors due to their high sensitivities but are limited by
their 1/f noise. Detecting sub-nanoTesla magnetic fields is therefore challenging. A possible route to achieve this goal is to
amplify the sensor sensitivity by using a high gain flux concentrator. Here we demonstrate a gain of 440 with the addition
of Flux Concentrators (FCs) on Symmetric Response MTJs (SR-MTJs).

The challenge in increasing the sensitivity of the MTJ itself lies in the compromise between the ability of the free layer
magnetization to rotate freely and the need to keep the magnetization uniform without domain formation. This is a key
point as reducing the noise of the sensor requires increasing the magnetic volume and thus using micron-size junctions.
The solution we developed for our symmetric response MTJ is to use a soft-pinned free layer [1]. We precisely control the
exchange coupling strength between the free layer and an IrMn layer by inserting a thin Ru spacer layer. The corresponding
exchange field value is measured with a vibrating sample magnetometer.

With a soft-pinned free layer, we obtained SR-MTJs with a sensitivity 3.6 %/mT. Our experimental results are well
described by an analytical model based on Stoner-Wohlfarth model considering exchange, Zeeman and shape anisotropy
energies. We also included in the model any possible misalignment due to the process (orientation of the junction, direction
of the magnetic field during annealing) or to the measurement.

To further control the free layer stabilization, we patterned our junctions in different shapes and aspect ratio, ranging
from a 0.8*4 µm ellipse to a 4*25 µm rectangle. Shapes elongated along the magnetization at rest (y axis) will increase the
overall pinning: it leads to a decrease of sensitivity as can be seen in Fig. 1 for positive shape anisotropy fields (µ0Hk,shape >
0). In our convention, negative shape anisotropy fields correspond to junctions whose shape is elongated along the applied
field axis (x axis). In this case the sensitivity increases as a result of lowering the free layer stabilization at the eventual
cost of loosing the uniform magnetization. Thus we expect that a fine tuning of the shape anisotropy should increase the
sensitivity by compensating for the magnetocrystalline anisotropy.

Figure 1: Average normalized sensitivity measured on nominally identical junctions of different shapes with µ0Hex = 4.75mT as a
function of the shape anisotropy field. Squares and circles represent rectangular and elliptical junctions respectively. The number of
samples measured for calculating the average sensitivity is indicated close to each data point. The error bar corresponds to the standard
deviation. Shapes elongated along y (x) correspond to µ0Hk,shape > 0 (< 0) and disks correspond to µ0Hk,shape = 0.
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Finally, to strongly increase the sensitivity, 6µm-thick NiFe flux concentrators were electrodeposited around the MTJs.
Their elongated shape and narrow air-gap of 10 µm are the key points to obtain the highest amplification by contrast to
previously published studies [2]. We have measured a gain of 440 for our most recent fabrication. The effect of the flux
concentrators is shown in Fig. 2 with the response of the SR-MTJ without FC in inset. The FC very high gain results in a
drastic increase of sensitivity on small fields range.

Figure 2: Symmetric response of a soft-pinned junction with flux concentrators aligned with the hard axis. The high gain result in a
strong increase of the sensitivity at low magnetic field. Inset: same junction without flux concentrators. The exchange soft-pinning field
is 4.75 mT.

To conclude, using the high gain flux concentrators we achieve a sensitivity of 1580 %/mT. This result paves the way
towards the detection of very small fields with an integrated sensor. For space missions, such a miniature sensor could
advantageously replace currently used magnetometers with a significant reduction of mass [3].
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Novel technologies for thermal energy harvesting at the small scale (i.e. harnessing small temperature gradients over

distances of a few millimeters) represent a growing research field due to the need for supplying low-power wireless sensor
nodes, wearable devices, implants, and other autonomous micro-devices. Indeed, the rise of IoT, and the global sustainability
challenges (i.e. smart-buildings, smart-cities) bring new focus on the recovery of ultralow waste heat (i.e. in a temperature
range from 25 ◦C to 80 ◦C) [1], definitely the cheapest, and most ubiquitous energy source in anthropized environments.
This makes efficient low-grade heat recovery an almost obvious, and essential technological goal.

In spite of their extreme design simplicity, Seebeck effect based devices fall short of the efficiency needs, particularly when
working over small temperature gradients [2]. Nowadays, caloric materials, originally studied for cooling applications [3]
have been identified as a possible alternative to thermoelectrics with some very promising results reported on pyroelectrics
[4].

Besides, self-actuating thermomagnetic generators (TMG), have been demonstrated as another alternative to thermo-
electrics [5]. Recently, a device using a 40 µm Gd film bounded on a cantilever as active substance, has been reported
[6].

Here we present a self-oscillating, autonomous TMG prototype, based on the so called linear-design [7], working over a
20 ◦C temperature difference between the hot, and cold reservoirs. The device size, and weight have been reduced, keeping
a high power output thanks to an improved thermal management, and to the use of an optimized field source. This makes
the prototype presented here the smallest and lightest TMG device reported so far.

The active material, a flexible, freestanding, 17 µm Gd film [8], shown in Fig.1.b, oscillates between the hot, and cold
ends, as shown in Fig.1.a, over a gap of 40 µm. Heat exchange between the active substance and the reservoirs take place
through direct solid-solid contact thanks to the excellent surface smoothness of the film, and to its flexibility. This is a key
issue of the proposed design as it allows getting rid of heat exchange fluids, and of their energy consuming management.

a b

c

d

e

Figure 1: a) schematic representation of the linear device design. b) Gd film. c) laser cut piezoelectric spring. d) the Gd
film mounted over the spring. e) the patterned NdFeB hard-magnet film.

The field source is a patterned NdFeB hard-magnet film [9], shown in Fig.1.e. The resulting magnetic field is highly
confined, and shows strong gradients, over displacements of tens of micrometers. In this way, the field is used to switch
the caloric effect, and at the same time to move the film against the elastic force of the spring. On the other hand, a laser-
cut piezoelectric spring, shown in Fig.1.b, allows achieving a self-oscillating bistable regime converting the mechanical
energy into electrical energy. Experiments show that a frequency of 100 Hz is achievable working over a small temperature
difference, with the hot side at 30 ◦C and heat sink at 10 ◦C. This result is a key step towards higher output power. We shall
present the main characteristics of the device with a particular focus on its self-actuating dynamics, and on the prospects to
achieve further improvements of its throughput.
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Mechanobiology is the study of mechanisms by which cells sense and respond to mechanical signals. This field relates
to both the intrinsic mechanical properties of the cell constituents and the way the cell reacts to the stiffness and stress from
the environment. In this context, the use of magnetic nanoparticles provides a unique and very effective way to exert remote
forces and torques at the nanoscale, on living cells. A great advantage of using magnetism in this field of mechanobiology is
that the induced stress can be easily tuned remotely by playing on a number of parameters such as external magnetic field
amplitude, direction, frequency. Magnetically induced mechanical stimulation is also much easier to implement, not only
for in vitro testing with cells, but also for in vivo experiment. It has been for instance demonstrated that the mechanical
stimulation of cancer cells can trigger cells death, thanks to the low frequency vibrations of nanoparticles [1–4], which
allows to envision the development of medical treatment at a later stage. At a lower level of mechanical stress the magneto-
mechanical stimulation has a strong influence on the cells cytoskeleton, which triggers a variety of signaling pathways and,
consequently, of physiological reactions (Fig.1).

The magnetic nanoparticles used for biomedical applications are often functionalized superparamagnetic iron oxide
particles with size in the 5 to 20 nm range. However, because the force and torque resulting from an applied magnetic
field depend on their volume, they are too small to induce a sizeable mechanical effect at the cell scale: To get forces
in the nano-newton range, magnetic particles with size closer to 1 micron are required. One challenge is then to design
magnetic particles in this size range with good biocompatibility, easy to disperse in liquid without agglomerating, and easy
to functionalize with surface chemistry. Two example of magnetic nanoparticles that we have developed are gold-covered
permalloy (Ni80Fe20) thin disks with diameter 1.3 µm. Due to their aspect ratio and low magnetocrystalline anisotropy
they show a vortex magnetic structure in the absence of applied field, providing them with good dispersion properties [5].
A second type of particles that we have developed, which are easier process, is a magnetite powder obtained from ball-
milling [3] (Fig.1).

The magneto-mechanical stimulation of cells was tested with different types of cells. For instance, using U87 glioma
brain cancer cells, we observed that a weak stimulation induces already a severe disturbance of the cell actin cytoskeleton,
resulting in a cell contraction, a loss of mobility and a pause in cell division. A stronger stimulation can induce the spon-
taneous death of the cell through apoptosis [1–3]. Thanks to a stimulation with a moderate alternating field of 20 mT at
20 Hz for 30 minutes, the death of 80% of the cancer cells can be induced, in particular via apoptosis (Fig.1). Remarkably,
the cells that survive the mechanical stress do not proliferate any more during several days. The magneto-mechanical treat-
ment can be repeated until the cancer cells are fully destroyed. This approach can lead to a new approach towards cancer
treatment, either alone or in conjunction with chemotherapy. An even stronger stimulation can result in a disruption of the
cell membrane and thereby cell necrosis, accompanied with inflammatory reactions potentially inducing metastasis.

Similar experiments of magneto-mechanical cancer cells destruction has been made with mice (to which human glioblas-
toma brain cancer cells were implanted). Contrary to expectations following the in vitro tests, the magneto-mechanical
treatment did not induce significant difference in the survival time for the mice. Subsequent analyzes however showed two
major differences between in vitro and in vivo studies: on the one hand, under in vivo conditions, the nanoparticles do not
penetrate the cell membrane and, on the other hand, the nanoparticles injected in the tumor stay close to the injection site
so that only the center area of the tumor was affected by the magnetic treatment.

Experiments were also conducted with insulin-producing INS1 pancreatic cells [4]. We demonstrated that the mag-
netically induced mechanical stimulation these cells allows enhancing insulin secretion (Fig.1). The experiments were
conducted both by culturing pancreatic cells on vibrating magnetic membranes as well as by dispersing vibrating magnetic
particles among the pancreatic cells. This observation can also open a new route towards innovative diabetes-2 treatment
whereby the insulin level of a diabetic patient would be increased, not by injection of insulin with a syringe, but by an
external magnetic field with magnetic particles being permanently dispersed in the pancreas.
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Figure 1: a) Two types of superparamagnetic-like particles used for the magneto-mechanical stimulation of cells: Au coated
magnetic NiFe vortex nanoparticles (left) and magnetite nanopowder (right). b) Cytoskeleton disruption: U87 cancer
control cell with stained actin cytoskeleton (left); cell with damaged cytoskeleton after NP magneto-mechanical vibration
(right). c) In vitro results of magneto-mechanical stimulation of U87 glioma cancer cells. Blue and red bars: control
cells (cells without particles and cells with particles but no oscillating field), green bar: cells with particles, submitted to
oscillating magnetic field. Right after field application 80% of the cancer cells are dead (d0). Interestingly, the remaining
alive cells do not proliferate for the next two days (d1 and d2). d) Insulin production of INS1 pancreatic cells under
mechanical stimulation. A significant increase in insulin secretion is observed after 10 minutes.
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In recent years, spin torque nano-oscillators (STNOs) have been intensively studied as spintronic devices for use in
artificial neural networks (ANNs) [1]. Non-trivial tasks such as vowel recognition were achieved in a computing system,
where four STNOs represent a chain of four artificial neurons [2]. More recently, STNOs have also been proposed to work
as synapses in ANNs where, based on the spin diode effect [3], the synaptic weight depends on the frequency difference
between the input RF signal and the resonator [4].

In this work, a new mechanism to combine a non-volatile behaviour with the spin diode detection of a vortex-based STNO
is presented [5]. Experimentally, it is observed that the spin diode response (i.e. synaptic weight) of the oscillator depends
on the binary vortex chirality (clockwise or counterclockwise sense of the in-plane magnetic moments). Consequently, as
shown in Fig. 1, fixing the frequency of the incoming signal and switching the vortex chirality results in a different rectified
voltage (V+ and V−) and, consequently, different synaptic weights (slopes W+ and W−). The chirality is stable at remanence,
leading to a non-volatile control of the output voltage for a given input frequency. Micromagnetic simulations corroborate
the experimental results and show the main contribution of the Oersted field created by the input RF current density in
defining two distinct spin diode detections for different chiralities. This work opens new perspectives for the integration of
spintronic devices in neuromorphic hardware.

Figure 1: Rectified voltage measured at a fixed frequency of 60 MHz and presented as a function of the input RF current
density. A linear fit is also calculated for each set of experimental data. Different chiralities lead to different slopes, cor-
responding to two distinct synaptic weights, W+ and W−. On the right, from micromagnetic simulations, two illustrations
show the magnetic vortex state for each chirality.
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Spin-related phenomena are attracting increasing interest from information technology, due to the possibility to bring
together the advantages of non-volatile devices and low energy state switching. Physical effects like spin-orbit torque and
spin-transfer torque have found application for fast non-volatile memories, and recently, the MagnetoElectric Spin-Orbit
(MESO) device, proposed by INTEL, is expected to bring a dramatic improvement with respect to CMOS in terms of power
consumption and logic density [1].

In a previous work [2], a novel device featuring the interplay of ferromagnetism and ferroelectricity has been proposed;
in which the data is stored in a ferroelectric layer, and can be read by injecting a spin-polarized current and exploiting the
ferroelectric control of spin-to-charge interconversion. This phenomenon can be observed in several materials, ranging from
oxide-based two dimensional electron gases [2], to Ferroelectric Rashba semiconductors [3]. We expect this device to be
interesting for applications in logic, memories and non-conventional computing. In this work, we want to propose a novel
technology called Spin-orbit Ferroelectric RAM (SoFRAM), in which the pheonomenon described above is exploited for a
non volatile memory with a lower writing energy with respect to magnetic memories, and with a non destructive reading
of the ferroelectric state.

We show the development of the compact model of the device, which is later tested by means of Finite Element Method
(FEM) simulations for spin-dependent transport. Later, these simulations are also used to optimize the performances of the
device, with a particular focus on the output signal, and materials choice is also discussed. In the last part, we propose a
few architectures, with reading and writing strategies, in which the SoFRAM can be implemented for a large-scale memory
array.

Figure 1: (left) Sketch of the sofRAM, (middle) representation of the current lines computed via FEM, and (right) compar-
ison of the compact model parameters computed analytically with the results of simulations.
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Solving computational problems of ever-increasing complexity and size, in response to the needs of the modern infor-
mation and computation society, poses major challenges for the development of future technologies. A main concern is the
increase in the energy consumption of computing systems, related to the computing architecture that imposes a constant
data transfer between memory and processing units. In addition, energy consumption continues to increase with the com-
plexity of the problems. Therefore, novel hardware approaches are needed to remedy the issue of energy consumption,
while improving at the same time crucial parameters such as high speed, compactness and integrability. In this context,
spin-torque nano-oscillators (STNOs) have been explored recently to develop innovative cognitive computing schemes,
demonstrating vowel recognition via the synchronization of an array of STNOs [1]. STNOs thus provide an important av-
enue to develop novel computing approaches, making a detailed analysis of their amplitude, frequency, and phase dynamics
essential, particularly when implementing arrays of coupled STNOs.

In this contribution, the phase dynamics is explored for vortex-based STNOs, for which a magnetic vortex is stabilized
in the free layer and whose dynamics is excited by spin-transfer torque using an applied electrical DC current. While the
free-running STNO has an arbitrary phase, subject to large phase fluctuations, the phase takes discrete values with bounded
noise, when the STNO is synchronized to an external RF signal [2, 3]. This synchronization operation is called injection-
locking. Besides locking the frequency to the external source frequency, see Figure 1(a), injection-locking provides a stable
phase reference and allows discretization of the phase values. A particular case is the second harmonic injection-locking
(SHIL) where the external signal has two times the STNO’s frequency. This enables the phase to take binary π shifted values.
Thermal fluctuations lead to small, bounded oscillations around the stable phase state and can in addition induce stochastic
phase jumps between the two discrete phase values. Those phase jumps are illustrated in Figure 1(b). Their occurrence
and rate will depend on the properties of the STNO, the frequency mismatch with the external RF source as well as on the
experimental conditions.

Figure 1: (a) Color map of the power spectral density for a vortex STNO under second harmonic injection-locking. (b) The
instantaneous phase difference between STNO and RF source, for two values (red and blue curves) of the locking signal
frequency. The phase was extracted by applying the Hilbert transform to the voltage time trace of the STNO’s output signal.

While stochastic phase jumps will be detrimental for applications such as phase-shift-keying [3], they can be exploited
for cryptography applications to generate true random numbers or for unconventional computing schemes such as Ising
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machines. The Ising machine is a hardware implementation of the Ising model of a 2D binary spin-lattice, built to solve
optimization problems. It relies on the convergence of the system’s energy towards its global minimum to find the solution
to a given optimization problem that is mapped to the Ising model through the coupling between spins. Reference [4]
proposes to build such an Ising machine using the binary phase states of SHIL oscillators. In this study, we leverage the
stochastic phase jumps of a SHIL vortex-based STNOs, to converge to the energy minimum and to provide a proof of concept
of an oscillator-based Ising machine.

To achieve this ambitious goal, it is fundamental to understand experimentally the phase dynamics of an injection-locked
STNO which are subject to phase fluctuations as well as to additional signals either from an RF source or from coupling to
other STNOs. Results will be presented to illustrate how the stochastic phase jumps can be controlled by the operating point
(DC current, applied magnetic field), the ratio and mismatch between the STNO and external RF source frequencies, the
RF excitation type (via current or field), and an additional weak RF signal provided by a signal generator or the coupling
to one or more STNOs. We discuss how this phase dynamics can be exploited to develop an oscillator-based Ising machine
or Hopfied networks [5].
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Spin torque nano-oscillators (STNO) are nanoscale devices based on magnetic tunnel junctions. Such STNOs generate
microwave voltage signals upon injection of a DC current. The phase dynamics of weakly coupled arrays of STNOs and/or
coupling of STNOs to an external RF signal (injection locking), can be harnessed to develop novel hardware approaches for
unconventional computing [1]. When injection locked to a signal with two times the natural frequency of the oscillator
(2f injection locking), the phase difference between the STNO and the external signal can take two discrete stable values,
i.e. it becomes binary. In this case, such phase difference, that we call ψ, can be exploited to represent the binary spins of
an Ising Hamiltonian, given in Eq. 1. Here σi, j represent the binary spins, Ji, j is the coupling between spins i and j and the
Hamiltonian gives the energy of the coupled Ising spin system.

H (σ) =
∑
i, j

Ji, jσiσ j −µ
∑

j

h jσ j (1)

Interestingly, many combinatorial optimization problems (COP) can be mapped to such an Ising Hamiltonian. The
minimization of it or, in other words, the inherent convergence towards the global energy minimum of the Ising system
can then be used as an algorithm to determine the solution of a COP. Specific hardware implementations of such an Ising
system are called Ising machine (IM). Here, we address in a numerical study the implementation of an Oscillator based
Ising Machine (OIM) [2] using STNOs.

For the extraction of the dynamic properties of STNOs, we resort to solving numerically the Landau-Lifshitz-Gilbert-
Slonczewski equation including thermal fluctuations, in combination with the non-linear auto-oscillator model [3].

The possibility of implementing an STNO based IM has been studied in [4] for a particular set of parameters. Never-
theless, since the dynamics of STNOs described by the Lifshitz-Gilbert-Slonczewski (LLGS) equation is quite complex, it is
crucial to explore a wider set of conditions analyzing how the phase difference ψ and the coupling of the oscillators evolve.
With this in mind we simulate systems of multiple STNOs that are electrically coupled and 2f injection locked. Figure 1
illustrates one of such systems for 2 STNOs.

Figure 1: Schematics showing the STNO operation and the electrical coupling of two STNOs via a resistance R. HRF is the
RF field that injection locks the oscillators and VDC is the DC voltage applied to the STNO device.

For every simulation, we investigate the stochastic phase dynamics induced by thermal fluctuations. In each simulation
the phaseψi of each oscillator i is extracted. In figure 2 one can notice the binary nature ofψwhich undergoesπ transitions
stochastically. Then, we compute the correlation between the phases of the oscillators and the probabilities of the system
to be in each one of the possible phase configurations. One example of the possible configuration for 2 STNOs is shown in
figure 3.

This study is performed as a function of the operating point, the temperature, the strength and sign of the coupling
between the STNOs as well as the frequency mismatch to the external locking signal. The results will provide a guide for
the practical implementation of an OIM based on STNOs, considering the specific non-linear dynamic properties of STNOS.
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(a) Time evolution of ψ/π (b) Histogram of cos(ψ)

Figure 2: Phase difference ψ for a 2f injection locked STNO with VDC = 1.4V , µ0HDC = 0.04T , µ0HRF = 0.25mT.
The cosine in (b) was used to limit ψ between two values.

Figure 3: Cos(ψi)with i=1,2 corresponding to two electrically coupled STNOs that are 2f injection locked. Pjk with j,k=0,1
represent each possible phase configuration of the two oscillators where ψ= 0 corresponds to j,k=0 and ψ= π to j,k=1.
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Le calcul par réservoir est une méthode de machine learning récemment proposée dans les années 2000. Elle s’inscrit
dans la famille des réseaux de neurones artificiels [1]. Son principe de fonctionnement se calque sur celui du cerveau avec
des connections faites entre des neurones par le biais de synapses. Le réservoir est un système physique dont la dynamique
et la non-linéarité peuvent être exploitées pour l’analyse de données telles que la reconnaissance vocale. Une série de sig-
naux est injectée à l’entrée du réservoir, et une nouvelle série de données est lue en sortie. En passant dans le réservoir
les signaux sont modifiés de manière non-linéaire. Cette transformation permet de projeter les signaux d’entrées sur des
dimensionalités de calcul supérieures.
Du fait de la richesse de la dynamique qu’offrent les ondes de spin, nous nous proposons d’exploiter leurs propriétés afin
d’élaborer un tel réservoir physique. Ces excitations élémentaires et collectives de l’aimantation possèdent une gamme de
fréquence de l’ordre des GHz (idéale pour les applications télécoms et pour un traitement de données rapide). Les modes
propres d’un état magnétique (par exemple un vortex) peuvent jouer le rôle de signaux d’entrée et de sortie d’un réservoir.
En activant le régime non-linéaire, par application d’un champ rf au-dessus d’un certain seuil, des interactions complexes -
telles que la diffusion à trois ou quatre magnons - sont engendrées [2]. Ces processus permettent ainsi aux modes propres
de l’état magnétique de se coupler entre eux, et procure la non-linéarité nécessaire au calcul neuro-morphique.

Dans ce projet nous avons alors exploité les processus non-linéaires d’ondes de spin d’un état de vortex au sein d’un
disque d’Heusler Co2MnAl de 5 µm pour le calcul neuro-inspiré. Les simulations micromagnétiques ont été réalisées sous
le programme Mumax3. Le faible facteur d’amortissement α ≈ 104 qu’offre les Heuslers permet la prolongation des états
non-linéaires. L’état magnétique de vortex facilite la diffusion à trois magnons et ses

Figure 1: Catalogue non exhaustif des modes propres d’un état
de vortex dans un disque de Co2MnAl de 5 µm.

Figure 2: Spectre des ondes de spin pour un disque Co2MnAl de
5 µm dans un état de vortex

modes propres ont déjà étudiés pour des disques de 5 µm dans d’autres matériaux [3]. Les modes propres d’un état de
vortex au sein d’un disque sont plus facilement définissables que dans d’autres états magnétiques. La géométrie circulaire
donne lieu à une symétrie spatiale pour les profils de modes. Chaque mode propre est caractérisé par des indices (n, m).
Ces indices recensent le nombre de noeuds dans la direction radiale et azimutale du disque. Chacun des modes résonne à
une fréquence déterminée par le matériau et les dimensions du système.
Nous avons étudié les modes propres d’un disque de Co2MnAl de 5 µm hébergeant un vortex. Un champ extérieur Bex t
a été appliqué hors du plan (selon z) dépendant du temps et de l’espace - en raison de la symétrie donnée par (n, m).
La dépendance en temps se présente sous la forme d’un sinus cardinal à une fréquence de coupure de 50 GHz, afin
d’exciter tous les modes propres. La dépendance en espace se base de la fonction de Bessel - dû à la géométrie circu-
laire de notre système - englobant la direction radiale n et azimutal m du disque. Le champ extérieur appliqué devient :
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Bex t = sinc(π× f req× t)×J1
�

kn
ρ

p
x2 + y2 × cos(mφ)

�
, où J1 est le premier ordre de la fonction de Bessel, kn est le n-ième

zéro de la fonction de Bessel et est associé au mode n, ρ est le rayon du disque et φ est l’angle azimutal. Sur la figure 1
nous avons représenté la composante z de l’aimantation. Les amplitudes sont plus importantes au centre du disque. Les
fréquences de résonance sont typiquement comprises entre 2 GHz et 20 GHz, et augmentent avec le mode n (voir figure 2).
La relation de dispersion démontre un caractère backward − volume des ondes de spin.
La géométrie et l’état magnétique du système donnent lieu à des règles de sélection [4] pour lesquelles un magnon initial se
sépare spontanément en deux autres magnons, c’est la diffusion à trois magnons. L’énergie initiale et le moment angulaire
sont conservés durant le processus. Si le magnon initial est un mode m = 0, il se sépare en deux magnons, de modes ±m
et des modes radiaux n différents. À l’inverse si le magnon initial est un mode m̸= 0, les magnons produits ont des modes
azimutaux |m| différents, sans restriction sur n. Les fréquences des modes secondaires sont symétriquement réparties au-
tour de fexc

2 ±∆ f . Ainsi sur la figure 2, la fréquence d’excitation a été choisie à 7.5 GHz, les modes secondaires éligibles à
la diffusion à trois magnons doivent se trouvés à une fréquence de 3.75−∆ f et 3.75+∆ f .
La diffusion à trois magnons émane de la dynamique non-linéaire de notre système. Sur la figure 3 nous activons

Figure 3: Carte de densité spectrale de puissance d’ondes de
de spin dans un état de vortex sous l’application d’un champ
rf de 2 mT

le régime non-linéaire avec l’application d’un champ rf de 2 mT
(seuil pour lequel des modes diffusés apparaissent). La com-
posante z de l’aimantation est représentée sous une échelle log-
arithmique. Des modes diffusés/secondaires sont distinguables
pour des fréquences d’excitation comprises entre 6.3 GHz et 7.8
GHz. Ces modes sont la signature de la diffusion à trois magnons.
Les canaux verticaux peuvent correspondre à des modes n et
à des processus non-linéaires supplémentaires. Les lignes hor-
izontales en arrière-plan représentent les ondes de spin ther-
miques.

Les résultats présentés démontrent le caractère non-linéaire
de notre état de vortex d’un disque d’Heusler Co2MnAl de 5 µm.
L’identification des canaux de résonance permettent d’implémenter
des fréquences d’entrée - d’un magnon initial - au sein du réservoir
et prédire les fréquences de sortie -des magnons secondaires- afin
d’entraîner le système à la classification de séries de données. Des
expériences par spectroscopie Brillouin permettront d’observer la
diffusion à trois magnons et cartographier les ondes de spin au sein
d’une couche mince de Co2MnAl. La couche magnétique a été dé-
posé sur un substrat de MgO à l’Insitut Jean Lamour - (001)[110]
Co2MnAl (20nm)/(001)[100]MgO (250 µm) - par croissance épi-

taxiale. Elle est tournée de 45 degrés par rapport au plan (001) du MgO. Les disques ont été patternés au C2N au moyen des
processus de nanofabrication conventionnels. Ils sont encapsulés par un isolant SiO2(100nm). Des antennes Au encadrent
les disques et sont connectés à des ground-signal pads.
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Magnons, the fundamental excitations in magnetic materials, can undergo complex multimode scattering processes
when subjected to high input power. Within confined geometries such as vortex states in thin film disks, previous work has
demonstrated that three-magnon scattering can induce a conversion of radial modes into azimuthal modes [1], a process
that can also involve nonlocal stimulation [2]. In this presentation, we detail a recent investigation that leveraged such
nonlinear magnon scattering events within a magnetic vortex, confined in a 5 µm-diameter permalloy disk, for the purpose
of pattern recognition [3].

Our findings illustrate how the magnetic response to signal inputs composed of sine-wave pulses with varying frequen-
cies can result in the excitation of distinct azimuthal modes. Importantly, the power spectrum of these scattered modes
exhibits a significant dependence on the input sequences. Time-resolved micro-focus Brillouin light scattering spectroscopy
measurements reveal that the temporal overlaps of different input symbols promote cross-stimulation, resulting in a large
number of scattering channels and consequently leading to richer transient dynamics within the scattered mode populations.

Furthermore, micromagnetic simulations demonstrate that recognition rates of up to 99.4% can be achieved for four-
symbol sequences utilizing these scattered modes. This high level of performance persists even in the presence of amplitude
noise within the input signals. Our work introduces a novel approach to reservoir computing – termed modal multiplexing
– which hinges on the transport of information in reciprocal space, as opposed to the spatial or temporal domains that are
typically used.
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Figure 1: Working principle of a magnon-scattering reservoir (MSR). Sketches of different reservoirs based on (a) spatial, (b)
temporal and (c) modal multiplexing, the concept behind the MSR. (d) Radiofrequency pulses with different temporal order
but (e) the same average frequency content are used to trigger (f) nonlinear scattering between the magnon eigenmodes
in a magnetic vortex disk. The dynamic response is experimentally detected using Brillouin-light-scattering microscopy. In
contrast to a linear system (g), the MSR produces different outputs depending on the temporal order of the input (h).
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As artificial intelligence continues to rapidly develop worldwide, the increasing energy demands of traditional computing
approaches have sparked the need for more energy-efficient alternatives. A promising solution lies in the development of
neuromorphic computing systems drawing their inspiration from the human brain features i.e., high energy efficiency and
parallel processing capabilities [1, 2]. In particular, vortex-based spin-torque oscillators (STVOs) are promising candidates
for the realization of hardware neural networks. These nanoscale DC to AC converters have been successfully used to
perform automatic data classification thanks to their highly nonlinear dynamics, stability and CMOS-compatibility (see
Fig. 1) [3–5]. To facilitate the development of such STVO-based neuromorphic systems, simulations provide a valuable
strategy for overcoming the challenges associated with manipulating such nanostructures.
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Figure 1: The complex STVO dynamics can be used to process information nonlinearly. a) An input signal modulated in
amplitude is added to a DC bias current Idc and injected into a magnetic tunnel junction (MTJ). b) The spin transfer torque
leads to sustained oscillations of the vortex core in the plane of the MTJ. c) The amplitude of the voltage across the STVO
depends nonlinearly on the intensity of the input signal.

Recently, Abreu Araujo et al. developed an ultrafast STVO simulation framework based on the Thiele equation approach
[6]. The so-called data-driven Thiele equation approach (DD-TEA) combines the theoretical background of the Thiele
equation with numerical results extracted from micromagnetic simulations (MMS). This technique effectively models the
nonlinear STVO dynamics through an analytical description of the time-dependent reduced position of the vortex core s(t)
(see Eq. 1). The resulting relation is described in Eq. 2, with X(t) the position of the vortex core shown in Fig. 1, R the
radius of the STVO, Dt the sampling interval of the input signal, and α(t), β(t) and n(t) dynamical parameters extracted
from MMS, depending on t through the time-varying input signal. While the results are as accurate as MMS, they can be
obtained about 2.4 billion times faster [7].

s(t) =
||X(t)||

R
(1)

s(t) =
s(t − Dt)

n(t)

√√√�
1+

s(t − Dt)n(t)

α(t)/β(t)

�
exp(−n(t)α(t)Dt)−

s(t − Dt)n(t)

α(t)/β(t)

(2)

DD-TEA offers a valuable means to optimize the operating conditions of an experimental STVO-based neural network.
Parametric studies, which were previously impractical to conduct due to the time-intensive nature of MMS, have been
executed efficiently. The influence of the input signal amplitude and the level of noise in the system was assessed during the
classification of sine and square waveforms (see Fig. 2a). Furthermore, DD-TEA performs well at simulating the classification
of higher-dimensional data like images. The simulations speed allowed making quantitative comparisons between our
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Figure 2: Parametric studies of STVO-based neural networks performances conducted using the DD-TEA framework.

STVO-based neural networks and conventional software implementations on the MNIST handwritten digits recognition
task, also confirming the STVO dynamics efficacy for data classification (Fig. 2b).

DD-TEA is a technique that effectively simulates the complex dynamics of STVOs. It was used to conduct extensive
studies on the performances of STVO-based neural networks, allowing to observe the influence of operating parameters
on the quality of the classification for two different tasks. These results are highly valuable to optimize the fabrication of
an experimental setup efficiently. Furthermore, it will lead to the testing of more complex architectures to tackle sophisti-
cated machine learning tasks. To conclude, we expect that Eq. 2 will soon provide a path for enhancing our mathematical
understanding of the data processing mechanisms that take place inside STVO-based neural networks.
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Controlling the magnetic order of antiferromagnets is challenging due to the vanishing net magnetisation. For this
reason, the study of topologically protected real-space states of antiferromagnets is restricted by the difficulty in nucleating
these states.

Here, using atomistic simulations we demonstrate how to overcome the challenge of nucleating an antiferromagnetic
skyrmion in a thin film antiferromagnet, γ-IrMn3 (see Fig. 1). Utilising the exchange bias coupling between a ferromagnet
and an antiferromagnet, we imprint the spin structure of the former through the latter by means of a thermal cycling
procedure. The imprinted textures are shown to be stable against field perturbations. We discuss how various parameters
affect the efficiency of this imprinting and the characteristics of the imprinted textures.

This work paves way for further studies on topologically protected real-space phases in antiferromagnets and promotes
the development of denser and faster spintronic devices [1], [2].

Figure 1: (Left) Atomic structure of a slice of the simulation system consisting of a hybrid NiFe/Co/Pt ferromagnetic single
crystal coupled to a granular γ-IrMn3 antiferromagnet, across an atomically intermixed interface. The full size of the
simulation system is 100×100×6.67 nm. (Right) Cross-section of the spin texture obtained in the ferromagnet and at several
depths in the antiferromagnet, following a thermal cycling. The numbers indicate the relative position of the monolayers
away from the interface.
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Magnetic skyrmions have recently attracted a large interest owing to their rich physics at the frontier of topology and
magnetism and promising applications for non-volatile technological memory and logic devices. Skyrmions are local chi-
ral whirlings of the magnetization texture with particle like properties, owing to their small lateral dimensions (down to
the nanometer scale) and topological stability. They were recently demonstrated at room temperature in ultrathin heavy
metal/ferromagnetic films as well as their fast manipulation by electrical current [1]. Those were first important steps
toward technological applications where skyrmions in tracks are the information carriers. However, important challenges
still need to be faced regarding the electrical detection and the low power nucleation of the skyrmions, which are required
for the read and write operation in devices.
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Figure 1: (a) Resistance vs out of plane magnetic field hysteresis loop of the device. (b) XMCD-STXM image of a magnetic
skyrmion in a MTJ pillar of 500nm.

Here we demonstrate the nucleation by gate voltage and the electrical detection of a magnetic skyrmion in a mag-
netic tunnel junction (MTJ) using tunnelling magnetoresistance (TMR). To demonstrate this result, we combined scanning
tunnelling magnetic microscopy (STXM) and operando magneto-transport measurements of a MTJ fabricated on top of
an ultrathin SiN membrane. This allowed us to perform simultaneously high spatial resolution magnetic imaging of the
spin texture within the MTJ and transport measurements to enable an unambiguous electrical detection of the magnetic
skyrmion. Fig. 1a shows the hysteresis loop of a 500 nm diameter MTJ showing a TMR of 53% with sharp reversal and a
resistance area product around 700Ω·µm2. Starting from the parallel magnetization resistance state with a uniform magne-
tization, the application of a voltage pulse (10 ns) leads to a jump of the resistance (470Ω) to a stable intermediate resistance
state. XMCD-STXM imaging shows that this new resistance state is associated with the nucleation of a skyrmion in the free
layer of the MTJ (see Fig. 1b). Micromagnetic simulations using experimental parameters show that the nucleation can
be explained by the transient nucleation of a vortex state, via voltage-induced decrease of the magnetic anisotropy, which
eventually relaxes towards a skyrmionic state. These results demonstrate the read and write operations of a skyrmion based
device and are an important milestone for low power applications based on the manipulation of magnetic skyrmions.
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Compact magnetic skyrmions are potential bit-encoding states for spintronic memory and logic applications that have
been the subject of a rapidly growing number of studies in recent years. Nevertheless, despite numerous attempts, a satisfac-
tory theoretical description of these objects is still lacking today due to the highly non-trivial character of the magnetostatic
interaction that plays a major role in determining the nature of magnetization patterns in ferromagnetic materials. The
orthodox theory of skyrmions in ultrathin ferromagnetic layers with interfacial DMI relies on a model that accounts for the
dipolar interaction through an effective anisotropy term, neglecting long-range effects. At the same time, in single ferro-
magnetic layers with interfacial DMI, large chiral skyrmions, also called skyrmionic bubbles have been observed, suggesting
a non-trivial interplay between DMI and long-range dipolar effects [1]. We will present our work where we used rigorous
mathematical analysis to develop a skyrmion theory that takes into account the full dipolar energy in the thin film regime
and provides analytical formulas for compact skyrmion radius, rotation angle and energy [2]. Our theory reveals the ex-
istence of a new regime at low DMI were skyrmions are stabilized by a combination of non-local dipolar interaction and
a magnetic field applied parallel to their core . This predictions are confirmed by our numerical simulations[3]. Finally,
we will discuss the theory of skyrmion lifetime in a continuum field theory where we interpret skyrmion collapse events as
capture by an absorber at microscale. This yields to an explicit Arrhenius collapse rate for skyrmions with both the barrier
height and the prefactor as functions of all the material parameters [4]. Or work provides a guide in material system design
in view of optimizing the skyrmion lifetime for applications.
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Figure 1: Left side: Schematic representation of the skyrmion phase diagram as a function of DMI and applied magnetic field
where positive field is applied in the direction along with the magnetization in the skyrmion core (parallel configuration). We
represent 3 types of skyrmion instabilities, stripe out, collapse and bursting as well as the optimal skyrmion stability zone.The
new regime of field stabilized skyrmions is indicated. Right side: Analytical predictions of the skyrmion characteristics in
the low DMI regime for d = 5 nm, A = 20 pJ/m, Ms = 105 A/m, and Ku = 6346 J/m3 corresponding to Q = 1.01: (a)
Skyrmion radius rsky and (b) skyrmion rotation angle. (c) skyrmion radius and (d) skyrmion rotation angle from MuMax3
simulations on a 2048 × 2048 nm2 square box with mesh size 2 × 2 × 5 nm. The dashed line is the line of zero bursting
barrier.
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Skyrmions in magnetic materials are nanoscale, chiral topological solitons which exhibit several dynamical phenomena
that have garnered much interest for fundamental reasons and technological applications alike [1]. While most studies until
now have focused on their motion as rigid particles under different stimuli like spin currents or thermal fluctuations, only
a few experimental reports [2, 3] exist on their internal mode dynamics owing to large damping coefficients.

Here we present the resonant dynamics of ultrathin film [P t/CoFeB/AlOx] × 20 multilayers hosting stable skyrmion
lattices under ambient conditions while exhibiting low Gilbert damping α= 0.02 [4]. We identify distinct spin wave modes
associated with skyrmions by combining magnetic force microscopy (MFM) and ferromagnetic resonance (FMR) experi-
ments with micromagnetic simulations. At low frequencies (<2 GHz), we observe several modes related to the precession
of the uniform background state of individual layers close to or at the surfaces of the stack, along with eigenmodes localized
to the skyrmion edges. At intermediate frequencies (2−8 GHz), the precession of the uniform background near the centre
of the stack dominates the response. We report the experimental observation of a new dynamical mode at high frequency
(>12 GHz), which is most visible in the skyrmion lattice phase. FMR spectroscopy reveals clear peaks in the susceptibility
above 12 GHz over a range of applied magnetic fields, which we find through micromagnetics simulations to correspond
to a coherent precession of the skyrmion core. The skyrmions here have a distinct three-dimensional structure due to
the competition between all the existing magnetic interactions in these multilayers. Moreover, the simulations show that
this core precession generates spin waves, with wavelengths in the range of 50 to 80 nm, that flow into the ferromagnetic
background, illustrating the potential of skyrmions to convert uniform radiofrequency waves into nanoscale excitations.

Using micromagnetic simulations we also examine the role of spin wave interactions with the skyrmion cores. As the
applied field increases and skyrmions begin to annihilate, leaving vacancies in the hexagonal lattice, the excitation of the
high-frequency mode can “anneal” the lattice, resulting in a glassy state. These results also shed new light on how dynamical
excitations can influence phase transitions associated with the melting of skyrmion lattices [5].
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Magnetic skyrmions, spin swirling particle like entities, have been in the focal point of many researches in condensed
matter physics due to their solitonic nature combined with their chiral and topological properties. To increase their thermal
stability up to room temperature, one of the strategies has been to increase individual layer thickness or the number of
repetitions in multilayers. However, this is at the cost of an enhanced impact of dipolar interaction, resulting in an enlarge-
ment of the skyrmion size and a reduction of the stability for smallest skyrmion. A solution to these issues that has been
proposed is to rely on materials with reduced or cancelled magnetization i.e., ferrimagnets[1] or synthetic antiferromag-
nets[2]. Besides the gain in static properties, another advantage of skyrmions in ferrimagnets (or antiferromagnets) is that
the so-called skyrmion Hall angle, a transversal motion due to their topological charge, is reduced or even cancelled. For
most of the skyrmionic systems, an important issue is the presence of a finite pinning landscape that impedes them to reach
their flow regime of motion. There are predominantly two reasons for this limitation. First, as mentioned before, the impact
of skyrmion Hall angle can lead to skyrmion annihilation on the device edges before they can reach very large velocities.
The second is that the driving force i.e., the amplitude of SOT is not large enough. Hence, in spite of several works reporting
high DW velocity in ferrimagnets, there are not many reports on the motion of fast skyrmions (>>100 ms−1).
In this study, we investigate the SOT driven motion of small skyrmions in magnetic-multilayers based on a ferrimagnetic
system with the aim of achieving high mobility together with reduced skyrmion Hall effect. To achieve these goals, we con-
sider Pt|Co|Tb multilayers of various thicknesses with antiferromagnetic coupling between the Co and Tb magnetization,
hence forming a synthetic ferrimagnet. In order to increase the velocity of ferrimagnetic skyrmions, there are two important
levers that can be activated. The first one is the amplitude of SOT that can be increased by enhancing the charge-to-spin
conversion either in the bulk through the choice of nonmagnetic materials in contact with ferromagnet or at the interfaces.
The second parameter is the energy dissipation rate, that can be efficiently reduced by increasing the antiferromagnetic
(AFM) coupling between the Co and Tb layers. Through the tuning of these two parameters, we succeed to reach the flow
regime for skyrmion motion at the largest current densities, with velocities up to 400 ms−1 for current densities around
8× 1011 A/m2.

The sputtering deposited multi-layered samples have the following structure: Si/SiO2(280 nm)/Ta (5 nm)/Pt (5 nm)/[Pt
(3 nm)/Co (tCo)/Tb (tT b)/Al (3 nm)]N/Pt (2 nm), where tCo=1.0-1.5 nm, tT b=0.25-1.0 nm, and N=1 and 5. HAADF STEM
images along with EDX mapping reveals that beyond tT b=0.5 nm, there is distinct EDX peaks associated to Tb confirming
the formation of well defined Tb layer. However, since the thickness of Tb has been varied continuously from 0.25 – 1.0 nm,
we expect to transit from less than a monolayer to continuous layers of Tb albeit with limited accuracy on exact thicknesses.
We find a decrease in magnetization and an enhancement of PMA with increasing Tb thickness, both being associated
to the enhancement of the AFM coupling between the Co and Tb layers. This increase of coupling between Co and Tb
films has been confirmed by XMCD measurements both at Co and Tb edges. The presence of rather large interfacial DMI
(Ds = −1.62± 0.20 pJ/m, measured using BLS) together with the interlayer dipolar coupling results in the stabilization of
skyrmions in the multilayer samples up to tT b= 0.6 nm. However, for thicker Tb (upto 1 nm), the anisotropy energy arising
from the AFM coupling between Co and Tb becomes too large, impeding the formation of any skyrmionic phase.

Skyrmions under an external out-of-plane field of ∼41 mT is illustrated by a sequence of MFM images in Fig. 1(a) – (d).
First, we observe that the position of the skyrmions after a series of pulses remain in the central part of the 1 µm wide track,
with no clear transverse displacement due to skyrmion Hall effect. This relative straight motion is due to the combination
of the reduced skyrmion Hall angle expected in ferrimagnet and the finite repulsion from the track edges. This explanation
is further confirmed by the observation of a transverse skyrmion motion in a wider track (3 µm), in which skyrmions are
found to move with an angle of ∼ 29o, in good agreement to the calculated value of 27.5o. In Fig. 1(e), we display the
experimental skyrmion velocity vs. current density for different samples with varying Tb thickness, namely 0.25 nm, 0.4 nm
and 0.6 nm. Each velocity is obtained by the measuring the displacements for all the skyrmions (typically between 5 and 10)
present in the 10-20 µm long track. From the comparison between field induced DW and current induced skyrmion motion,
different dynamical regimes can be clearly identified. Above the depinning transition, the skyrmion motion is predicted to
reach the flow regime which is independent of pinning and controlled by dissipation. As observed in Fig. 1(e), the flow
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Figure 1: (a) – (d) Current induced skyrmion motion in [Pt (3 nm)/Co (1.3 nm)/Tb (0.6 nm)/Al (3 nm)]×5 multilayers
after application of two successive 10 ns wide current pulses in between two images with J = 3.5× 1011 A/m2 under an
external perpendicular field 41 mT. The circles and the dashed lines are guide to eye to track the motion of individual
skyrmions. (e) Average skyrmion velocity (filled symbols) vs current density for different samples with varying Tb thickness
in the multilayers. Error bars corresponding to each data points represent the standard deviation of the skyrmion velocity
inside the tracks. The blue straight and dashed lines correspond to the fit of depinning law and the prediction for the flow
regime, respectively. The green and red lines are guides to eye underlying the depinning law.

regime is only reached for tT b=0.6 nm. Note that the maximum velocity ∼400 m/s (specifically for skyrmions with radius
< 100 nm) is among the largest ones for dynamics of ferrimagnetic skyrmions. We confirm that the enhanced skyrmion
velocity in our system is a consequence of the systematic engineering of the efficient damping-like torque (spin Hall angle
∼ 8.6%) as well as the AFM coupling between the Co-Tb layers.
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Skyrmions in metallic multilayers qualify as ultrasmall bits of magnetic information, and have been proposed for mass
data storage and logic operations, although their application is hindered by the significant power required for their manip-
ulation. An approach to circumvent this limitation with possible advantages in terms of operation speed, detectability, and
power has been to use ferrimagnetic or even antiferromagnetic systems. A crucial advantage of skyrmions in antiferromag-
netic systems is that the so-called skyrmion Hall angle, a transversal motion due to their topological charge, is reduced or
even cancelled. Moreover, as intrinsic dynamics in AFMs is dominated by the strength of the exchange energy, AFM solitons
benefit from increased velocities.

Multilayers are adequate systems to produce synthetic antiferromagnets (SAFs), where two ferromagnetic layers are
coupled antiferromagnetically through a normal metal carrying the so-called RKKY interaction [1]. However, it should be
noted that, due to compensation of the magnetization, SAFs remain nearly unaffected by moderate magnetic fields. Hence,
a bias layer with uniform magnetization (m=z) is required to couple ferromagnetically with one of the magnetic layers to
promote the spin spirals along z and expand in the expense of the parts with m=-z. However, the use of such a bias layer has
been proven to be detrimental for efficient optimization of the spin torques to drive the skyrmions in SAFs. In this regard,
optical vortex beams (Fig. 1(a)) offer an opportunity to overcome these difficulties by transferring their orbital angular
momentum (OAM) [as well as spin angular momentum (SAM)] to magnetic materials. The coupling between photon
magnetic fields and local magnetic moments operates via a coherent Zeeman or magneto-electric interaction, potentially
also being helped by induced local temperature gradients. The potential flexibility of the technique to nucleate skyrmions at
well-defined positions is already attractive in itself, but OAM light also offers a new handle to move the created skyrmions.
In this work, we focus on exploring the possibilities to nucleated and stabilize skyrmionic spin textures in the non-biased
SAFs at remanence by shooting them with OAM laser pulses.

(a) (b)

(c)

Intensity IntensityPhase

5 mm

Figure 1: (a) Shape of an OAM laser beam. (b) Consequence of an OAM beam in modifying the topography of a sample.
(c) Energy and phase gradient distribution of an OAM beam.

Typical shape of an OAM laser beam is shown in Fig. 1(a). Most of the energy is distributed over the ring, whereas the
central part of the beam consists of lowest energy and highest OAM. The consequence of such a beam on the topography
of the sample can be observed in Fig. 1(b), where the ring area is significantly perturbed due to the high energy of the
beam whereas the central part is intact. The distribution of the energy and the phase gradient of the OAM beam is shown
in Fig. 1(c).

In order to image the resultant configuration after shooting with laser pulses, we have performed the magnetic force
microscopy (MFM) imaging in vacuum to obtain the required sensitivity to prove AFM spin textures using home-built
magnetic tips. The MFM phase signal of the exposed area after shooting a Gaussian pulse (OAM=0) is depicted in Fig. 2(a).
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It can be observed that due to transfer of energy from the Gaussian beam, some textures are formed at the centre of the
beam with the phase contrast of ∼ 2o (similar to the expected range for AFM textures). Further, Fig. 2(b) and (c) represent
the same areas after applying an external perpendicular field of 100 mT and at remanence, respectively. It can be observed
that, skyrmions (small white dots) can be stabilized at finite applied field as previously reported in literature. However,
upon releasing the external field, the system goes back to the initial state and does not retain the skyrmionic textures.

1 mm
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Figure 2: (a)-(c) Magnetic states of the samples in areas exposed to Gaussian laser pulses. The MFM phase signal of
the exposed area after the laser pulse is depicted in (a), whereas (b) and (c) represents the same areas at 100 mT and
remanence, respectively. Similarly, the MFM phase of the exposed area shoot with linear OAM laser pulse is shown in (d),
whereas (e) and (f) represent the same area at 90 mT and remanence, respectively. MFM image of the samples exposed to
either (g) single shot, or (h-i) two-shots OAM pulses.

Similarly, the MFM image of the exposed area after shooting a linear OAM pulse (SAM=0) is depicted in Fig. 2(d).
We see a co-existence of white big patches (domains) as well as skyrmion like textures (small black dots). Fig. 2(e) and
(f) represent the same areas after applying an external field of 90 mT and at remanence, respectively. In contrary to the
gaussian pulse, we observe that the skyrmionic textures are retained at magnetic remanence (Fig. 2(f)) when the sample is
exposed to the linear OAM laser pulse. We further verify that the size and density of the skyrmionic textures at remanence
can be modified by the strength of the applied magnetic fields. It should be noted that the sample has been exposed to
multiple shots (>100) of laser pulses in the MFM images shown in Fig. 2(a)-(f). In order to understand the role of OAM
more properly, we have performed the same experiments for either single shot (Fig. 2(g)) or two-shots (Fig. 2(h)-(i)) OAM
pulses. Due to unavailability of sufficient energy (as discussed in Fig. 1) in the center for the single shot pulse, the magnetic
state remains unperturbed at the centre of the OAM pulse (Fig. 2(g)) whereas due to high energy in the ring area, the phase
signal increases to more than 2o indicating partial break of the AFM coupling between the two magnetic layers. Nevertheless,
with careful tuning of the number of pulses and the energy, we show that skyrmionic textures can be stabilized in the central
high OAM area of the laser pulse as demonstrated in Fig. 2 (h) and (i). The perspective will be to identify how the skyrmion
properties and/or their density are depending the OAM characteristics.
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Often the study of skyrmions is motivated by technological applications where the skyrmion acts as a bit of information
in a circuit made of magnetic materials [1, 2]. The skyrmions are interesting in such applications, because, having a soliton
behaviour, they can move around corners or even edge defects, keeping their shape and properties [3]. Moreover, skyrmions
will not easily merge with each others, so their number is conserved. All these desirable properties result from repulsive
forces from any type of “walls”, notably track edges, magnetic domain walls, and other skyrmions. Despite the prime
importance of these repulsion forces, reports about their experimental measurements are scarce [4].

In this study, we present results obtained on (Pt|Co|Al) based multilayers, with typically ten repetitions. This structure
has been chosen because it allows a high thermal stability of the skyrmions as well as an optimized SOT generated both
from the Pt layers and from the Co|Al interface [5]. We have been able to perform current-induced motion of skyrmion,
with diameters close to 200 nm, at speeds exceeding 20 ms−1 with a skyrmion Hall angle θSk = 45◦ (see Fig. 1a). From
those experiments, we have found a threshold below which the skyrmions are not annihilated when they reach the opposite
edge of the device, permitting the measurement of the skyrmion-edge repulsion force (≈ 0.4pN.). This repulsion enables
the straight motion of skyrmions over more than 30 µm (Fig. 1b) which is accompanied by an increase of their velocity.

Figure 1: Example of skyrmion-edge interaction. (a) Evolution of skyrmion velocity and skyrmion Hall angle as a function
of J . (b) Current-induced motion of skyrmions over micrometres distances due to the repulsion from the top edge of the
track.

We have also investigated the skyrmion-skyrmion interaction which is of importance to perform, for example, skyrmion
logic operations [6]. We have found that this repulsion is strong enough to permit the depinning of a skyrmion (see Fig. 2a)
and to quantify its amplitude we have analysed the phenomena happening at the exit of a device, namely repulsion and
merging. With COMSOL calculations we have estimated this force to be ≈ 0.02 pN.

The last interaction that we have investigated is the skyrmion-domain one. We have observed in various experiments
that the presence of domains within a track can alter the current-induced motion of the skyrmions for example by modifying
their trajectory. To take advantage of this behaviour, we have stabilized a long magnetic domain within a track, joining both
exit of the device to fix its position. Thanks to the presence of a notch at one of the edge of the device, we have been able to
precisely nucleate skyrmions and to drive them close to the domain (see Fig. 3). We have evaluated the amplitude of this
force and found ≈ 0.3pN.
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Figure 2: Examples of skyrmion-skyrmion interaction. (a) Depinning of a skyrmion (circle in blue) due to the repulsion,
which add to the driving force from the SOT, from the new coming skyrmion (circle in red). (b) Measurement of the
repulsion force between skyrmions, interacting (repulsion and/or merging) at the exit of a track, (c) through COMSOL
calculations which permit to plot the current density profile.

Figure 3: Example of skyrmion-domain wall interaction. (a-e) Sequence of Kerr images exhibiting the current-induced
motion of a skyrmion along a domain of parallel magnetization (with respect to the direction of the magnetization in the
core of the skyrmion). The motion is exempt from skyrmion Hall angle.
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Bairagi1, Johan Pelloux-Prayer1, Liliana D. Buda-Prejbeanu1, Rodrigo Guedas Garcia1, Stéphane

Auffret1, Andrea Locatelli2, Tevfik Onur Mentes2, Stefania Pizzini3, Pawan Kumar4, Aurore Finco4,
Vincent Jacques4, Gilles Gaudin1, and Olivier Boulle1

1Univ. Grenoble Alpes, CNRS, CEA, SPINTEC, 38054 Grenoble, France
2Elettra-Sincrotrone Trieste S.C.p.A, 34149 Basovizza, Trieste, Italy
3Univ. Grenoble Alpes, CNRS, Institut Néel, 38042 Grenoble, France

4Laboratoire Charles Coulomb, CNRS, Unviersité de Montpellier, 34095 Montpellier, France
*ilaria.dimanici@cea.fr

Skyrmions have been capturing scientific interest in the last years for their promising applications as nanoscale bits of
information for memories and logic devices [1]. Magnetic skyrmions are local chiral whirling of the magnetization present-
ing topological stability with a particle-like behaviour. Magnetic skyrmions at room temperature and their current induced
motion in multilayers have been demonstrated recently [2, 3] in ultrathin heavy metal/ferromagnetic films. However, fer-
romagnetic skyrmions suffer from several limitations for applications: their maximum velocity hardly reaches 100 m/s and
their motion deviates from the current direction, a phenomenon named skyrmion Hall effect. The latter is a direct con-
sequence of the skyrmion topological charge which leads to an additional gyrotropic force perpendicular to the skyrmion
velocity [4]. A possible solution to address these obstacles is the use of Synthetic Antiferromagnets (SAF). SAF consists of
two ferromagnetic layers antiferromagnetically coupled through a non magnetic layer via RKKY interaction. Skyrmions in
the two FM layers present an opposite topological charge that leads to a net gyrotropic vector equal to zero and hence a
cancellation of the skyrmion Hall effect [5]. This cancellation also leads to the enhancement of the skyrmion velocity.

Figure 1: Current induced motion of SAF skyrmions observed by magnetic force microscopy (MFM). a. Sequence of images
acquired after injection of subsequent pulses of 1.24 ns, 1.28 ns, 1.19 ns 1.17 ns with respectively current density J =
6.39×1011A/m2,−5.81×1011A/m2,−7.15×1011A/m2, 7.24×1011A/m2. b. Sequence of images acquired before and after
the injection of a pulse of 0.88 ns with current density of J = 8, 09×1011A/m2. c. Sequence of images acquired before and
after the injection of two subsequent pulses of 0.54 ns and 0.53 ns with current density respectively of J = 7.71×1011A/m2

and −8.02× 1011A/m2.

In this presentation, we show that in optimized compensated SAF the cancellation of the topological charge allows
skyrmions to be driven by spin orbit torque very fast, up to 885 m/s along the current direction. The SAF stack considered
is composed of two Pt/Co layers AF coupled via a Ru interlayer. The Pt/Co interface provides the PMA and DMI required for
skyrmion stabilization at room temperature and the Ru interlayer thickness is tuned to provide the maximum AF coupling
via RKKY interaction. 3 µm wide tracks were patterned on the device to study the current induced dynamics. A single
pulse of current is injected in the track and the magnetic contrast is recorded with a magnetic force microscopy (MFM)
before and after the pulse. By measuring the displacement of skyrmion in subsequent images and dividing it by the applied

80



pulse width we obtained the velocity and the angle of deviation from the current trajectory. Figure 1 shows examples of
MFM images after successive injection of current pulses. The skyrmions are moving with small deviations from the current
direction. The dynamics is found to be irregular due to the effect of pinning by inhomogeneities in the material, nonetheless
events of motion with velocity higher than 1000 m/s are observed. By performing systematic measurements, the average
skyrmion velocity and skyrmion Hall angle were measured as a function of the current density (Figure 2). We observe that
the skyrmion velocity increases with the current density (Figure 2a). A maximal velocity of around 885 m/s is measured
for a current density of 8.9× 1011A/m2. The skyrmion Hall angle is found to depend little on the skyrmion velocity with
an average deviation from the current trajectory around 6° (Figure 2b). These results demonstrate the fast current induced
skyrmion motion in SAF with a cancellation of the skyrmion Hall effect.

To study the impact of the cancellation of the topological charge provided by the AF coupling, we also investigated a
synthetic ferromagnetic (SF) stack and the ferromagnetic Pt/Co/Ru trilayer. The former is obtained by coupling ferromag-
netically the two Co layers via RKKY using a thicker Ru interlayer, while the thickness of all the other layers is the same as in
the SAF stack. The two samples showed similar dynamics with skyrmion velocity that reached a maximum of around 80 m/s
for the SF and 120 m/s for the single layer with respectively a maximum deflection angle of 87.9° and 61.7°. These values
are consistent with what was previously obtained by inducing current motion in ferromagnetic ultra thin films. This demon-
strates that the cancellation of topological charge increases by about one order of magnitude the velocity of the skyrmions
in ultrathin ferromagnetic/heavy metal layers while maintaining the skyrmions trajectory along the current direction.

Figure 2: a. Average skyrmion velocity as a function of the current density measured experimentally (black squares). The
black line correspond to the skyrmion velocity obtained Thiele equation model using experimental parameters. The blue
triangles are the velocities measured for the synthetic ferromagnetic (SF) skyrmions while the red squares are the velocities
for the single layer Pt/Co/Ru. The red line correspond to the skyrmion velocity obtained from the Thiele equation b.
Skyrmion Hall angle as a function of the skyrmion velocity of the SAF skyrmions (black squares), SF skyrmions (red dots)
and single layer Pt/Co/Ru (blue triangles).
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Topological magnetic textures have been under close scrutiny in recent years as they could represent an original asset
for the development of next-generation spintronics devices, especially in terms of stability and energy consumption. Chiral
magnets and magnetic multilayers allow for the stabilization of two-dimensional (2D) textures that have been extensively
investigated, like the magnetic skyrmion. Beyond these 2D textures, a new interest has surged for more complex quasi-
particles that display variations over the thickness, i.e., three-dimensional (3D) objects, leading to the discovery of new
categories of topological textures. To cite a few, truncated skyrmion have been reported [1], as well as bobbers [2] or even
hopfions [3] in magnetic multilayers. In this work, we show how by engineering Pt/Co/Al based multilayers with variable
Co thickness, we observe the signature of new textures, called skyrmionic cocoons [4] that are only present in a fraction of
the magnetic layers. Interestingly, these cocoons can coexist with more standard ‘tubular’ skyrmions going through all the
multilayer as evidenced by the existence of two very different contrasts in the magnetic force microscopy (MFM) images
recorded at room temperature that can be easily correlated with the corresponding micromagnetic simulations (Fig. 1).

Figure 1: Cocoons and skyrmion tubes. Top: experimental MFM phase maps displaying two types of textures (two different
contrasts). Bottom: corresponding micromagnetic simulations, evidencing the 3D nature of the cocoons and the skyrmion
tubes (iso surfaces at mz = −0.8 are displayed in red).

One major shortcoming of studying 3D textures is the difficulty to access information about the bulk magnetization. To
this end, we also performed magneto-transport measurements as well as X-ray measurements at various synchrotrons. In
Fig. 2a, an image acquired by holography, a transmission technique, clearly shows different contrasts that thus corresponds
to objects with various vertical extension [5]. Moreover, in Fig. 2b, a reconstruction of the magnetization, measured with
X-ray laminography, is shown, evidencing the different magnetic textures in our aperiodic multilayers. Their coexistence
and the discovery of a novel magnetic texture are particularly interesting as they can open new paths for three-dimensional
spintronics.

82



Figure 2: Synchrotron characterization. a) X-ray Fourier transform holography, a transmission technique, showing isolated
cocoons (gray dots) and paired ones (black dots). b) Experimental 3D magnetization distribution obtained with X-ray
laminography measurements (iso surface at mz = 0 is displayed in white).
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Magnetic skyrmions, localized and topologically non-trivial entities, are extensively investigated due to their solitonic
nature. They may be created in appropriated conditions in terms of temperature (close to RT) and operating magnetic
fields (from a few hundreds of mT down to zero field). In most experimental studies reported in the literature for thin
multilayers, the observation of skyrmions requires an easy axis of magnetization perpendicular to the plane of the layers
(namely PMA, Perpendicular Magnetic Anisotropy), as well as the Dzyaloshinskii-Moriya Interaction (DMI), as for instance
[1, 2]. Unfortunately, these latter studies often imply low material thicknesses [(4-15)Å, for strong surface anisotropies]
and high Gilbert damping factor (0.3) as in Ref.[2] leading to low thermal stability of skyrmions and large current densities
(3 1011A/m2 [1]) for their motion. These characteristics are serious obstacles for applications in spintronics. An alternative
is to use ferrimagnets [3, 4] leading to the fabrication of skyrmions with higher magnetic thickness as 19Å [4], lower current
density as 1.1 109A/m2 [2], and lower damping value as 0.07 [3], with in particular the use of multilayers [3, 4].

The case of Fe(tFe)/Gd(tGd) multilayers, where t designate the thicknesses in the sub-nanometric range, is interesting to
explore when the thicknesses of layers, and consequently the Gd rate (namely τGd), are modified. In particular, this system
changes from perpendicular to in-plane magnetic anisotropy (IMA) at RT by enhancing τGd in the (20-32)% range (rare
earth rich composition regime) [5]. The critical τGd value, revealing the crossover from PMA to IMA, is close to 29.5% for
[Fe(5.1)/Gd(5.9)]77 (leading to a period λ=tFe+tGd equals to 11.0Å), as seen in the previous reference. Moreover, dipole-
stabilized skyrmions are formed at RT in similar stack with lower thicknesses, [Gd(4Å)/Fe(3.4Å)]80 where λ=7.4Å and
similar τGd (≈29%) behaving PMA [6]. The reason is lying on the competition of dipolar field and exchange energy for
such a sample, PMA being favoured for these thin thicknesses, and DMI interactions are assumed to be negligible. By
comparing the references [5, 6], a diminishing of λ seems to favor PMA. The composition of the sample (thicknesses and
number of repeats), as well as the operating temperature, appears to be important for tuning the magnetic anisotropy in
Fe/Gd [5, 7].

For the case of nanostructures behaving planar magnetic anisotropy, skyrmions can be also created, but for nevertheless
a few reported studies as in Ref.[8]. IMA is obtained for a magnetic thickness slightly higher than the cross-over from PMA to
IMA. In parallel, some recent theoretical works as [9] reveal the possibility of generating skyrmions by taking account an in-
plane-magnetization system. For our part, a [Fe(3.4Å)/Gd(7.2Å)]60 multilayer where λ=10.6Å and τGd=43.0% presents a
robust planar magnetic anisotropy [see Fig.1(b)]. The thicknesses are derived from fitted X-Ray Reflectivity measurements.
The effective magnetic anisotropy constant (Ke f f ) and the saturation magnetization (Msat) reach -7.640 105 erg/cm3 and
411.9 emu/cm3 respectively (leading to Ku=-1.230 105 erg/cm3 consistent with the strongest τGd value). Nevertheless,
46% as remanence is measured, and a particular double magnetic jump is observed in the (-500/500) Oe range for planar
magnetic fields data as shown in inset of Fig.1(b). This feature is useful when both planar and perpendicular magnetic
fields are applied during the Lorentz Transmission Electron Microscopy (LTEM) measurements.

From LTEM data [Fig.1(a)] at RT, different magnetic objects are firstly formed (such as in plane domain walls, concentric
circular lines, stripes, ripple contrast). Then, skyrmionic/bubbles entities, by a appropriate procedure of both planar and
perpendicular magnetic fields, are observed. An organized network of 110 nm broad skyrmion-like objects is observed.
Here, domains with magnetization parallel/antiparallel [respectively ↑/ ↓ as displayed in Fig.1(a)] to the perpendicular
direction appear as white/dark textures respectively. It appears a near equal population of these 2 opposite spins. We will
detail the protocol of measurements, and give some possible explanations to the remarkable picture in Fig.1(a) during the
presentation of results.

Moreover, additional Ferromagnetic Magnetic Resonance investigations at RT for perpendicular and planar magnetic
fields at RT will be also included.
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Figure 1: (a) : Lorentz Transmission Electron Microscopy (LTEM) at RT for a [Fe(3.5Å)/Gd(7.3Å)]N=60 multilayer when a
perpendicular magnetic field (BZ ,1=880 Oe) and a planar magnetic field (BX Y,1=30 Oe) are applied. See the equal distribu-
tion of circular ↑ and ↓magnetic domains. (b) : Magnetic loops at RT of the same stack for planar (BX Y , red curve obtained
from SQUID data) and perpendicular (BZ , blue curve obtained from EHE, Extraordinary hall effects) variable magnetic
fields. The EHE signal has been multiplied by (-1) for clarity of presentation, revealing a rare earth rich film. Here, BZ ,1
and +BX Y,1 are indicated in (b).
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Motion of domain wall depending on their structure in cylindrical magnetic nanowires in an intense topic of research
[1] to achieve racetrack-memory. The Bloch Point Wall (BPW) consists of a Bloch point surrounded by azimuthal curling
of magnetization at the wire periphery. Velocity of such wall is predicted to be above 1 km.s−1. On the experimetal side
intense efforts are made to overcome unwanted pinning of walls in such system to promote fast and controlled motion.
Geometrical and chemical modulations or tubular and core-shell structure are many aspect that are currently under inves-
tigation. In a recent experiment, we considered Permalloy Fe20Ni80 nanowires with micrometers-long segments chemicaly
modulated by the insertion of Fe80Ni20 sections of few tens of nanometers. We reported BPW velocity above 600 m.s−1

under a ns pulse of spin-transfer-torque[2], dynamically stabilised by the Œrsted field during motion. Simulations suggest
an interplay between volume topological objects (Bloch points) and surface objects (vortex-antivortex pairs) during the
motion. Two curling magnetization segments may be found in such conduits. Aside the BPW that are easy to nucleate
with large current pulses, magnetostatic energy induces the occurrence of curling magnetization at the modulations. Such
circulation has been shown to be switchable using 1-10 ns electrical current pulses, driven by the associated Œrsted field [3].

We will present time-resolved (TR) magnetic imaging using Scanning Transmission X-ray Microscopy (STXM) (see
Fig. ??) , that reveals the reproducible switching mechanism of both of these elements with a 50 ps time resolution. The
threshold current for switching is around 5.1011 A.m2. Above typically 7.1011 A.m2 the circulation switching occurs in less
than 200 ps. This points at an ultrafast swiching mechanism, which we explain by the strength of Œrsted field and dynamic
dipolar field in nanowires. When approaching the current threshold the switching time tends to diverge, consistent with
expectations from theory and simulations. A comparison with micromagnetic simulations and analytical simulations will be
shown, with a view to provide a comprehensive picture of this ultrafast phenomenon, which we believe should be common
to other curvilinear systems.
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Figure 1: Time-resolved STXM imaging of BPW circulation switching. Images are separated of 100ps.
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Magnetic domains walls (DWs)[1] are one of the key spin-texture elements bearing the ability to move along the flow
of an externally applied electrical current, e.g. through spin-transfer torque (STT)[2] or Oersted (Oe)-field. This makes
them interesting entities for information encoding or electrically controlled memory applications. Until now, such studies
on magnetic DWs have generally been performed in two-dimensional (2D) strips, however for their 3D integration in race
tracks[3] nanowires/tubes have been proposed.

As compared to 2D strips, the curved 3D topology[4] induces the existence of specific DWs called Bloch-point walls
(BPW). The BPW exhibits azimuthal curling of magnetic moments around a Bloch point, a local singularity of the mag-
netization vector[5]. Potential advantages of the BPW is that they tend to be stabilized under Oe-field[6] and have been
predicted to retain a steady-state motion without undergoing the Walker breakdown[5]. Recent experiments have shown
that these BPW can attain DW velocities > 600 ms−1 under current densities ∼ 2.4× 1011Am−2[5]. The case of magnetic
nanotubes is at first sight very similar, except that the core is missing. However, using specific materials such as NiCoB
it is possible to stabilize domains with azimuthal magnetization. This makes them very suitable to be addressed by the
application of Oe-fields, not STT.

Here we report Oe-field driven DW motion experiments using transmission X-ray microscopy (TXM) on ferromagnetic
nanotubes. These tubes have been grown by electro-less deposition of CoNi in a porous polycarbonate membrane, then
filled with copper (Cu) by electrodeposition and finally contacted over X-ray transparent windows (see Fig. 1). We selected
tubes of diameter 250 nm made of soft ferromagnetic alloys NiCoB with expected composition of 60 % of Co and 40 % of Ni.
This system display azimuthal magnetization with several magnetic domains separated by narrow DWs. Experiments have
been conducted at the Pollux SLS beamline and the ALBA Mistral beamline with home-made design electronics allowing to
send electric pulses as narrow as 1 ns. Fig. 2 shows a static images taken during a series of current pulses that allowed us
to move the DWs under Oe-field. Consecutive pulses of same width and height let us move the walls in a quite reproducible
fashion. This led us to a first estimation of 100 ms−1 for the domain wall speed.

A complete study of these DWs will be presented including domain wall structure analysis using micromagnetic simula-
tions combined with electron holography.

Figure 1: NiCo tubes with 250 nm diameter and wall thickness of ∼ 30 nm, filled by Cu and contacted electrically. The
inset is a cross section (using FIB) showing the conformation of the metal contact onto the tube.
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Figure 2: XMCD contrast obtained with TXM microscopy of a contacted tube. A pulse of current is sent between each image
(see details on the left side of the image).
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We have studied the effect of He+ irradiation on the dynamics of chiral domain-walls (DWs) in ultra-thin Pt/Co/AlOx
trilayers [1]. Through a self-consistent description of the creep and depinning dynamics [2] completed by a scaling model
of DW depinning [3] (relating microscopic DW pinning properties to DW dynamics and micromagnetic parameters), we
reveal an excellent scaling between the variations of the DW pinning length scale ξ and the DW width parameter. This
scaling strongly suggests that the modification of the DW pinning by irradiation is essentially dominated by the variations
of DW magnetic texture (via the variation of the magnetic anisotropy), while short range atomic displacement produced by
irradiation have a weak impact on the pinning disorder [4].

The DW velocity versus applied perpendicular magnetic field is reported in the Figure 1(a) for increasing He+ fluence.
As it can be observed, the irradiation leads to a strong decrease of the depinning field and an enhancement of DW velocity.
The velocity curves present a good agreement with the self-consistent description of the creep (solid lines) and depinning
(dashed lines) dynamics, which allows extracting the values of the pinning parameters [3] (depinning field, temperature and
velocity (not shown)). Complementary characterizations of the trilayers (determination of the saturation magnetization,
anisotropy, and Dzyaloshinskii-Moriya interaction (DMI)) reveal that irradiation essentially reduces the anisotropy, which
increases the DW width, while the other micromagnetic parameters remain only weakly affected. Using the scaling model
of DW depinning [2], we deduce the pinning length ξ (see Fig. 1(b)) and the pinning strength fpin (see Fig. 1(c)). Their
variations with He+ fluence are found to present a perfect scaling with those of the DW width ∆ and DW energy per unit
length σt, respectively.

Figure 1: Effect of He+ ion irradiation on DW dynamics and DW-disorder interaction: (a) domain wall velocity versus out-of
plane field µ0Hz for increasing irradiation fluence; comparison between (b) DW-disorder characteristic length scale ξ and
DW parameter ∆ , (c) pinning strength fpin and DW energy per unit length σt.
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Magnetic skyrmions are local whirling of the magnetization found in certain magnetic films. Their properties including
topological stability, sizes down to nm-scale and the possibility of manipulation by electrical current, leading to the proposal
of novel memory and logic technologies where skyrmions in racetrack are information carriers. These applications require
high data throughput and computing speed. Room temperature skyrmions and their current induced manipulation were
recently demonstrated in ultrathin ferromagnetic/heavy metal multilayers, which was an important step toward their use
in devices [1]. The heterostructures composed of ferrimagnetic oxides (FMOx) based on rare-earth iron garnets in contact
with high spin-orbit materials (SOM) have recently attracted a large attention grace to their assets for the current induced
skyrmion manipulation. Their advantages include electrical insulation which allows to minimize the energy loss due to
current shunting, small saturation magnetization Ms, small magnetic damping α, leading to large domain wall mobility,
significant DMI interaction at the FMOx/SOM interface [2–4]. In addition to this, FMOx are thermally and chemically
more stable than metals and their the magnetic properties can be tuned by playing on the strain, composition, annealing
conditions or interfaces [5–7].

The Thulium Iron Garnet (TmIG - Tm3Fe5O12) and Yttrium Iron Garnet (YIG - Y3Fe5O12) samples with thicknesses
varying from 6 to 100 nm were deposited on Gadolinium Gallium Garnet (GGG - Gd3Ga5O12) (111) substrate using radio
frequency sputtering technique, and were annealed in air after the deposition. The structural properties of the deposited
films were studied after using X-ray reflectivity (XRR) and X-ray diffraction (XRD) techniques, which demonstrated a good
quality of the samples and the presence of 0, 8% strain in the TmIG layer, causing magnetoelastically induced perpendicular
magnetic anisotropy (PMA). The YIG samples are not strained and have in-plane easy magnetization axis.

TmIG/GGG samples exhibit perpendicular magnetization for all thicknesses ranging between 6 and 40 nm with square
hysteresis loop and sharp reversal (see Fig. 1) associated with large magnetic domains. 5 nm Pt layer was deposited on the
TmIG(12 nm)/GGG sample in order to study Spin Hall effect, which demonstrated the injection of spin-current into the
TmIG layer with the Hall resistance RH = 1 mΩ. However, the quite large PMA in the stacks did not allow the nucleation of
magnetic skyrmions.

Figure 1: The hysteresis loop of the TmIG(12 nm)/GGG
sample measured in the MOKE microscope under out-
of-plane magnetic field.

Figure 2: Ke f f dependence on YIG layer thickness in
TmIG(10 nm)/YIG(x nm)/GGG bilayers.

With the purpose to significantly reduce the anisotropy of the films, bilayers TmIG/YIG/GGG with fixed TmIG layer
thickness tT mIG = 10 nm and different tY IG were fabricated. These samples have only one easy axis magnetization, de-
pending on the proportions of the layers, since both layers have the same iron network. With the increase of YIG layer the
effective anisotropy can be reduced to a value down to Ke f f = 0,2 ± 0, 5 kJ/m3 for TmIG(10 nm)/YIG(15,5 nm)/GGG,
as shown in the Fig. 2. The PMA bilayer samples with Ke f f < 1 kJ/m3 have butterfly-type hysteresis loop with reduced
remanence (see Fig. 3), exhibiting magnetic bubbles (see Fig. 4).
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Figure 3: The hysteresis loop of the TmIG(10 nm)/YIG(13
nm)/GGG sample measured in the MOKE microscope in the out-
of-plane magnetic field.

Figure 4: The polar-MOKE image of the
TmIG(10 nm)/YIG(13 nm)/GGG sample
measured in the applied out-of-plane mag-
netic field Bz = −2 mT.

Brillouin Light Scattering (BLS) experiments and current-induced experiments are currently in progress to study the
dynamics of these magnetic bubbles driven by spin orbit torque and identify the nature of their chirality and topology. In
addition, domain propagation by applying short magnetic pulses experiments are planned to check the presence of DMI.
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Ion irradiation with light ions is an appealing way to finely tune the magnetic properties of thin magnetic films and in
particular the perpendicular magnetic anisotropy (PMA) [1]. In this work [2] we illustrate the effect of He+ irradiation
on the magnetization reversal and the domain wall dynamics in Pt/Co/AlOx trilayers. Fluences up to 1.5×1015 ions/cm2

strongly decrease the PMA, without affecting neither the spontaneous magnetization nor the strength of the interfacial
Dzyaloshinskii-Moriya interaction (DMI). This confirms experimentally the robustness of the DMI interaction against inter-
facial chemical intermixing, already predicted by theory [3]. In parallel with the decrease of the PMA, a strong decrease of
the domain wall depinning field is observed after irradiation. This allows the domain walls to reach large maximum veloc-
ities with a lower magnetic field compared to that needed for the pristine films. Decoupling PMA from DMI can therefore
be beneficial for the design of low energy devices based on domain wall dynamics. When the samples are irradiated with
larger He+ fluences (≈ 3×1015 ions/cm2), the magnetization gets close to the out-of-plane/in-plane reorientation transi-
tion, where ≈100nm size magnetic skyrmions are stabilized. We observe that as the He+ fluence increases, the skyrmion
size decreases while these magnetic textures become more stable against the application of an external magnetic field, as
predicted by theoretical models developed for ultrathin films with labyrinthine domains.

Figure 1: (a,b) variation of coercive field (a) and domain wall velocity (b) with increasing He+ fluence; (c) stripe domains
and skyrmion bubbles stabilised for the highest He+ fluences, from 2.5 (top) to 3.2 (bottom) ×1015 ions/cm2.
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Collective spin excitations, or spin-waves, inside a magnet provide a unique spectroscopic signature on the nature of
the magnetic material as well as the magnetic texture present inside. The magnetic texture can be either a heterogeneity
in the equilibrium configuration (point defect, skyrmion, magnetic bubble, vortex, Bloch point ect...) or the dynamical one
(non-linear soliton, bullet mode, or spin-wave droplet). So far, the spectral signature is still mostly incomplete because most
of the spin-wave eigen-modes remain undetected due to the difficulties to couple them with spatially averaged quantities.
To circumvent this difficulty requires to use a local probe.

To achieve precisely this, we are currently developing a home-made NV-center microscope, whose purpose is to image
with nanometer precision the spatio-temporal profile of spin-wave eigen-modes inside a magnetic object [1, 2]. The
technical originality of our development is that the NV centre microscope seats between the poles of a 1.4 T electromagnet,
as shown in Figure. 1. In addition the originality of our setup is that the field of the electromagnet is defined and stabilised
at ppm resolution in order to study ultra narrow spectral features. As a first goal, we want to use this instrument to study the
influence of the dynamical pattern on the relaxation process. In magnetic system, the processes of dissipation are generally
poorly known, while they are key to several functions exploiting the very long relaxation time of magnetic resonance.

Figure 1: Picture of the NV center microscope developed at Spintec. A SiC frame supports XYZ actuators covering a field of
±2.5mm with a precision of about 10 pm. The non-magnetic assembly is inserted in a 1.4 T electromagnet. This preliminary
version operates at room temperature..
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A wealth of novel 3D magnetic architectures have been enabled by recent advances in micro-/nanofabrication [1, 2]. In
order to tackle the complexity of such systems, it is often necessary to resolve their magnetic configurations in their finest
details, which in turn implies the use of magnetization-sensitive vector tomographic approaches [3, 4]. Above a few 100’s
of nm in sample size, hard X-rays are the probe of choice. Notably, hard-X-ray imaging has been successfully applied to rare-
earth/transition metal alloy or multilayer samples with dimensions of a few microns [5–7]. These investigations have used
techniques relying on focused X-ray beams, namely ptychography and laminography; in practice, the presence of optical
elements close to the sample severely impedes upgrades to the sample environment. By contrast, plane-wave Coherent
Diffraction Imaging (CDI) [8, 9] with hard X-rays poses much less stringent requirements in terms of setup. This technique
allows to solve the phase problem in the case of far-field diffraction by an isolated object, provided that its dimensions are
small enough for the phase retrieval to succeed. With this in mind, we intend to augment the outstanding tomographic
capabilities of CDI [10] with vector magnetic imaging, in a dual-axis tomography approach [3].

First of all, sensitivity to magnetism is achieved through X-ray Resonant Magnetic Scattering (XRMS) [11], using circu-
larly polarized light. The contrast is then proportional to the magnetization component along the beam, integrated along
the path through the object. We use a diamond single crystal as quarter-wavelength plate [12] to obtain a high enough
degree of circular polarization at the energies of interest, typically at the L3 or L2 absorption edge of a magnetic rare earth
present in the sample (e.g. 7243 eV for the Gd L3 edge).

In terms of system to be imaged, we take advantage of high-fluence Pulsed Laser Deposition (PLD) to create 3D objects.
The latter are frozen droplets of target material with predominantly round shapes and a broad size distribution. We can thus
obtain beads with a size suitable for CDI (≲5 µm in our case) and a composition close to that of our target, Co80Gd20. Beads
that do not adhere too much to the initial substrate can be micromanipulated onto SiN or SiC membranes for synchrotron
experiments, as shown in Fig. 1.a). The CDI measurements are performed on the ID10 beamline at ESRF. At the photon
energy of interest, here 7244 eV, scattering patterns I+, I− can be acquired with opposite circular polarizations (+/-). An
exemplary scattering pattern I+ and the corresponding difference ∆I = (I+ − I−) between opposite-polarization patterns
are displayed in Fig. 1.b-c).

We are currently tackling the “inversion” of our reciprocal-space data. As a first step, we succeeded in obtaining 3D
structural reconstructions with conventional CDI phase retrieval algorithms, which recover the sample’s electronic density.
Two views of the reconstruction of the bead from Fig. 1.a) are included in Fig. 1.c-d). However, the reconstruction accuracy is
questionable since our strongly-scattering sample violates the hypotheses underlying the CDI algorithms. Magnetism, which
only produces a small modulation of the scattered intensities, is therefore not straightforwardly recovered. Moreover, this
modulation is an interference between structure and magnetism i.e. not a case for which the CDI algorithms have been
developed.

Our goal is to overcome this post-processing challenge and apply plane-wave CDI to magnetic imaging for the very
first time. The acquired data does suggest that vector magnetic tomography is possible with this technique, which can be
better-suited than e.g. ptychography or laminography for imaging under magnetic fields.
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Figure 1: a) A Co1-xGdx bead during micromanipulation onto a SiC membrane (not visible here). b) Scattering pattern at the
Gd L3 edge obtained with circular polarization. c-d) CDI structural reconstructions of the sample shown in a). e) Difference
between scattering patterns acquired with opposite circular polarizations. The intensity differences typically correspond to
<1% contrast. The yellow hatched area corresponds to the beamstop.
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Recent improvements in spintronics led to generations of non-volatile Magnetoresistive Random-Access Memories (MRAM)
devices that enable short switching time of few ns and low power consumption, such as the emerging current-induced Spin-
Orbit Torque (SOT) [1].

So far, studies of such devices mostly rely on the measurement of their electrical and magnetic characteristics using
all electrical methods [2, 3]. Meanwhile, direct observation can help understanding more finely the processes of reversal
and transport, which is becoming increasingly important in order to control and optimize these objects. However, these
components have small dimensions (typically <60 nm lateral, <1 nm in thickness), and observing magnetization textures
and reversal in these devices during their activation remains challenging and requires the use of large scale instruments [4].

On the other hand, transmission electron microscopy (TEM) is a unique tool offering the combination of nm-scale spatial
resolution and magnetic sensitivity and enabling detailed studies of said systems (see Fig. 1). Indeed, static magnetic field-
free Electron Holography (EH) can be performed on unbiased samples to give quantitative 2D projected electric field and
magnetic induction maps [5] with a magnetic sensitivity in the nmT range and details down to the nm scale. In order
to improve further the understanding of the magnetic reversal processes taking place inside these devices upon writing
and reading data, this work aims for an operando analysis (e.g. the quantitative dynamic imaging of their inner magnetic
structure) by performing EH with a controlled external bias applied on adequately prepared samples [6, 7].

Figure 1: TEM dark-field imaging of the inner structure in a SOT-MRAM device

The structures of interest that we will present are SOT Magnetic Tunnel Junctions (SOT-MTJ) with ferromagnetic layers
less than 1 nm thick. Weak internal fields close to the magnetic detection limit [8] makes the quality of the measurements
of particular importance. In addition, the device under observation has to be sufficiently thinned to allow the electron
beam to pass through heavy materials while remaining intact and without any behavior alteration, which requires a highly
controlled preparation process [9]. Finally, the injection of an electrical current, voltage or external field on the device inside
the electron microscope chamber is a technological challenge in and on itself [10], which also implies a specific preparation
protocol.

We will present a study that applies these concepts to SOT-MTJ devices in a pseudo-static regime, where in-situ Electron
Holography is performed with a constant applied bias on the device. Comparison of electrical characterizations will provide
an insight about the effect of the sample preparation process on their integrity. An exhaustive in-depth review of the
drawbacks of the method as well as the necessary precautions for a successful experiment will be presented, keeping in mind
the study of domain wall motion in such devices as the next step to build a deeper understanding of the SOT mechanisms.
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NV centers are defects in diamond which can be used as quantum sensors to probe magnetism at the nanoscale when
integrated in an atomic force microscope. Such a measurement relies on the spin S= 1 of the NV center: the static stray field
produced by a magnetic state induces a Zeeman shift on the spin sublevels, which can be detected optically. In addition, NV
centers are also sensitive to spin waves, as the magnetic noise originating from thermally activated spin waves accelerates
their spin relaxation. In this case, the enhanced relaxation leads to a decrease of the photoluminescence emitted by the NV
center [1], which allows an easy localization of spin waves interacting with magnetic textures. We applied this approach to
the study of Co-based perfectly compensated synthetic antiferromagnetic layers [2], in which we were able to detect spin
waves channeled inside the domain walls [3].

We report here on a more detailed investigation of domain walls and skyrmions in synthetic antiferromagnetic layers
using this approach. Our measurements reveal that the spatial distribution of the detected magnetic noise and its amplitude
are related to the chirality of the magnetic texture. We looked at Néel domain walls from both sides of the stack, after
growing it on a membrane, and we found a stronger noise signal for counter-clockwise rotating walls than for clockwise
rotating ones (see figure), in agreement with calculations.
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Figure 1: a) Magnetic stray field map measured above the synthetic antiferromagnet stack, showing counter-clockwise
rotating Néel walls. b) Simultaneously recorded NV center photoluminescence map, showing the presence of magnetic
noise coming from the walls. c) Magnetic stray field map measured from the other side of the stack, showing clockwise
rotating Néel walls. d) Simultaneously recorded NV center photoluminescence map, where the magnetic noise from the
walls is hardly visible.

Furthermore, we also extracted the magnetic noise pattern around the boundary of skyrmions and found that it is linked
to their internal texture. Our experimental data allows us to exclude Bloch skyrmions and is in agreement with the expected
noise distribution coming from Néel skyrmions.
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Since beginning 2020 the inelastic branch of the SEXTANTS beamline offers to the users a novel sample environment
for performing resonant inelastic X-ray scattering (RIXS) experiments under electric and magnetic fields, MAGELEC. It
consists of a sample holder equipped with 12 electrical contacts, which is combined with a compact quadrupolar magnet
delivering a rotatable magnetic field with a maximum strength of 0.45 T. Thanks to its particular design the whole scattering
plane is available for magnetic dichroism RIXS (RIXS-MD) experiments in a temperature range from 400 K down to 18 K.
Compatible with MAGELEC, we have recently installed an optical system allowing to correlate RIXS(-MD) measurements
with X-ray excited optical luminescence spectroscopy (XEOL). I will start by presenting the layout of this unique sample
environment. I will show the results obtained on ferromagnetic transition metal compounds, where RIXS spectra show an
important magnetic dichroic contrast in the energy loss and/or fluorescence channel. I will conclude by showing one of the
very first study of correlated RIXS and XEOL measurements performed under magentic field. I will discuss how these novel
perspectives offered by inelastic branch the SEXTANTS beamline will promote fundamental research on magnetic materials
through the possibility of tackling several kinds of open questions in the field of transition metal compounds beyond the
accuracy obtained by the widely used X-ray magnetic circular and/or linear magnetic dichroism.

Acknowledgments

Part of this work has been supported by the Labex Palm (Grant No.ANR-10-LABX-0039-PALM).

102



Poster 1.32, November 14th, 16h30–18h30

Spectroscopie de défauts paramagnétiques par
transitoires de photo-courant polarisés en spin dans les

nitrures dilués
A. C. Ulibarri1, *, C. J. J. Roubert1, C. T. K. Lew2, B. C. Johnson3, M. Morassi4, J. C. Harmand4, J.

Peretti1, and A. C. H. Rowe1

1LPMC, CNRS, Palaiseau, France
2University of Melbourne, Melbourne, Australia

3RMIT University, Melbourne, Australia
4C2N, CNRS, Palaiseau, France

*agatha.ulibarri@polytechnique.edu

La recombinaison dépendante du spin est un processus de type Shockley-Read-Hall (SRH) qui a lieu dans un centre
paramagnétique [1]. Avec une polarisation en spin des électrons de conduction induite par pompage optique, les centres
s’aimantent hors équilibre par un processus de polarisation dynamique.

Figure 1: Schéma de la recombinaison dépendante du spin

Dans les matériaux nitrures dilués de type GaAs1−xNx avec 0.007 < x < 0.04, cette polarisation dynamique des cen-
tres bloque la recombinaison SRH via un effet d’échange sur le centre polarisé. Ceci se manifeste par une augmentation
spectaculaire du temps de vie des porteurs et en conséquence l’intensité de la photoluminescence et du photo-courant.

Figure 2: Courbe montrant la différence entre l’intensité de photoluminescence de la recombinaison dépendante du spin
en rouge et sans spin en noir

Bien que la nature de ce centre soit connue (Ga2+ interstitiel [2]) grâce aux mesures de résonance de spin détectés
optiquement, les détails électroniques (énergie d’activation dans le gap) pourtant primordial pour la caractérisation de tout
défaut, restent inconnus. Ici, on utilise une modification originale de la technique dite «photo-induced current transient
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spectroscopy» ou PICTS en anglais [3], où le photo-courant est polarisé en spin en conditions de pompage optique. On
identifie des transitoires dépendant du spin, liées donc au piégeage d’électrons polarisés, et des transitoires non-polarisés
en spin, liées donc aux trous. Les énergies d’activation sont de 0,3 eV par rapport à la bande de conduction et 0,8 eV par
rapport à la bande de valence respectivement. La somme vaut le gap du matériau, 1,1 eV pour le GaAs0.978N0.022 [4], ce qui
donne confiance sur cette première mesure de l’énergie des centres associés avec l’interstitiel Ga2+.

Figure 3: Courbe montrant les pentes des différentes méthodes pour déterminer l’énergie d’activation du centre ((a) Boxcar
(b) Laplace (c)exponentielles)
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Critical temperatures for nuclear spin ordering in solids are generally less than 1 µK, because interactions
between nuclear spins are much weaker than electronic spin interactions. On the other hand, nuclear spin sys-
tem (NSS) can be cooled down to temperatures much lower than the lattice temperature because NSS reaches
an internal equilibrium within a time much shorter than the spin-lattice relaxation time. This offers an oppor-
tunity to explore the magnetic phase diagram at negative temperatures. In metals and dielectrics NSS cooling
and ordering has been reached using complex and unique purpose-built setups. We have shown that in semi-
conductor structures (i) spin temperatures of the order of 1 µK can be reached using commercial cryostats and
table-top electromagnets [vladimirova_spin_2018]; (ii) Two kinds of nuclear magnetic ordering can be induced
by resident electrons in a deeply cooled nuclear spin system, depending on the sign of the NSS temperature
[vladimirova_electron-induced_2021].

Figure 1: Two kinds of nuclear magnetic ordering expected in n-doped semiconductors: (a) randomly oriented
nuclear spin polarons at positive nuclear spin temperature and (b) ferromagnetic state maintained by dynamic
spin transfer between electron and nuclear spin systems at negative nuclear spin temperature. The large arrows
labelled S represent the localized electron spins, while the small yellow arrows represent the nuclear spins.

Nuclear spin ordering in semiconductors remains theoretical until now. The potential experimental detection
of the electron-induced nuclear correlations and ordering rely on our ability to efficiently cool the NSS and detect
its magnetisation non-destructively. The lifetime of the ordered states is limited by the inevitable heating of the
system, typically several seconds. We discuss how the nuclear spin ordering can be detected within this time by
off-resonant Faraday rotation or by spin noise spectroscopy, eventually combined with radio- frequency absorption
[vladimirova_electron-induced_2021, litvyak_warm-up_2021, vladimirova_simultaneous_2022].

Acknowledgments

Financial support from French national research agency is gratefully acknowledged (ANR-21-CE30-0049).

105



Poster 1.34, November 14th, 16h30–18h30

Ferromagnetic resonance damping in Co/2D material
heterostructures

Karen Sobnath1, *, Mehrdad Rahimi1, Maria Luisa Della Rocca1, Philippe Lafarge1, Clément Barraud1,
and François Mallet1,2

1Laboratoire Matériaux et Phénomènes Quantiques - Université Paris Cité, Paris, France
2Sorbonne Université, Paris, France

*karen.sobnath@u-paris.fr

One of the key challenges in spintronics is the efficient generation and detection of spin currents, paving the way for ultra-
fast and low power consumption devices for data storage and data processing. While many of the first proposed approaches
are suffering from conductance mismatch and power dissipation issues [1], spin pumping provides a powerful route to inject
and control dissipationless spin currents without charge current. This phenomena relies on the magnetization dynamic of
a ferromagnetic material (FM), brought to its ferromagnetic resonance (FMR) with an external magnetic field, leading
to the transfer of spin angular momentum at the interface between the FM and a non magnetic material (NM) [2]. The
understanding of the importance of interface effects in these systems, accelerated by the huge progress in nanofabrication
techniques, has oriented spintronics towards bidimensional (2D) materials. Indeed, 2D materials can be combined with
potentially defect-less interfaces, they cover nowadays all condensed matter phases (from metallic, to semiconducting,
insulating, superconducting and even recently magnetic) and present a large sensitivity to external parameters such as
proximity effect, electrostatic gating, strain, light, stacking and superlattice effects [3].

In our group, we aim to investigate spin pumping through different FM/2D material interfaces. For this purpose, I
performed broadband (4 GHz to 14 GHz) FMR measurements at room temperature in Co/graphene/hBN and Co/WSe2/hBN
samples compared to reference samples of Co and Co/Pd, deposited on a 6x10 µm² area on a on-chip microstrip RF antenna
(see Fig. 1). I will present the effect of these different interfaces on the magnetic damping of Co and discuss about their
origin.

Figure 1: SEM image of a heterostructure of Co (orange)/WSe2 (red)/hBN (green) deposited on a on-chip Au microstrip
(from top to bottom) for FMR measurements.
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CrTe2 is known in its bulk form to be a room temperature ferromagnet. Its layered nature makes it a particularly
promising material in the search for a 2D magnet at room temperature. Over the last few years, several works have started
to explore its properties, including magnetic one, for more-or-less thin layers, in some cases down to the 2D limit. Layer-
dependent changes in the magnetic properties have been reported [1–6], but several contradicting results have appeared
[7]. The current understanding [7] is that the unambiguous characterization of the material’s composition and structure
is hard to achieve, while several possible Cr-Te polymorphs are (meta)stable; additionally the material can transform into
different phases depending on various factors, especially related to temperature and to long-term exposure to air. Recent
experimental works showed that exfoliated CrTe2 has an in-plane spontaneous magnetization above room temperature, low
coercivity, and hosts Neel-type domain walls [2]. we have now explored such exfoliated thin flakes deposited on different
substrates, with inelastic light scattering techniques. Our first purpose is to track phonon vibrations and how they evolve
with temperature, from about 4 K to 500 K, in a temperature range where the material is expected to remain in its 1T
phase. We observe a characteristic, almost linear variation of the phonon’s energy with temperature, with no characteristic
saturation of the energy changes when reaching the lowest temperatures, in contrast to most van der Waals materials [8].
Above 500 K, we find that the CrTe2 phonon peaks progressively loose intensity, and in the meantime other peaks appear,
indicative of a structural/compositional change of the material (which relates to changes of the magnetic properties). Finally,
we also sought for another kind of inelastic light scattering process, namely the excitation of magnons that are essentially
unexplored in this material. So far, our low energy (Ecutoff ~1 meV) magneto-Raman scattering experiments could not
detect such excitations down to low temperature (4 K) or under intense magnetic fields.

Figure 1: Transformation of CrTe2 into Cr5Te8 by heating [7].
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Achieving the large-scale growth of 2D ferromagnetic materials with high Curie temperature and perpendicular magnetic
anisotropy is highly desirable for the development of future ultra-compact magnetic sensors or magnetic memories. In this
context, van der Waals (vdW) Cr2Te3 appears as a promising candidate. It exhibits strong perpendicular magnetic anisotropy
and a Curie temperature in bulk of 180 K. In this work, we will demonstrate the growth of quasi-freestanding few layers of
Cr2Te3 on various 2D, which exhibit strong variation in terms of magnetic anisotropy with the crystal structure and exotic
magnetotransport properties with of charge transfer from the 2D substrates.

The newly discovered class of two-dimensional (2D) ferromagnetic materials like CrI3 [1] and Cr2Ge2Te6 [2] has raised a
great interest in the scientific community. 2D ferromagnets with Curie temperatures (Tc) higher than room temperature and
perpendicular magnetic anisotropy (PMA) are required for future applications in the field of spintronics [3]-[4]. We report
here the successful epitaxial growth of 5 layers of van der Waals (vdW) Cr2Te3 layers achieved by molecular beam epitaxy
(MBE) on various vdW substrates such as monolayer (ML) graphene/SiC(001), monolayer WSe2/GaAs(111) and few layers
of Bi2Te3/Al2O3 [5]. This material was reported to have varying Tc up to 350 K and magnetic anisotropy depending on its
the stoichiometry [6].

We obtain single crystalline Cr2Te3 layers on a cm scale, as shown by reflection high-energy electron diffraction (RHEED)
(Fig. 1A). We also perform post-growth imaging of the heterostructure (Fig. 1B) using Transmission electron microscopy
(TEM). We clearly observe a vdW gap at the interface suggesting that the ferromagnet is in a quasi-freestanding state. We
also resolve a difference between full and partially filled planes of chromium (see Fig. 1B for the crystal structure). A full
structural analysis is performed as well using x-ray diffraction. The quality of the 2D layers is studied by Raman spectroscopy
and the Cr2Te3 stoichiometry is verified using Rutherford back scattering (RBS) measurements. We find contraction in-plane,
which is mostly vanishing after annealing.

SQUID magnetometry shows perpendicular magnetic anisotropy and long-range ferromagnetic order for all vdW het-
erostructures studied here (Fig. 1C). X-ray magnetic circular dichroism (XMCD) is also performed to verify the origin of
the magnetic signal. We also find a distribution of coercive field and magnetic anisotropy of the various layers, that we
attribute to structural deviations. To support our experimental observations we performed first principle calculations that
confirm a good correlation between the magnetic anisotropy and the out-of-plane lattice parameter of Cr2Te3 (Fig. 1D). All
our samples have a Curie temperature close to 180 K, and we conclude that the stoichiometry 2:3 of the layers measured
by RBS is the driving factor that determines the Curie temperature of theses systems as reported in [6].

We report Hall resistivity measurement using Hall bars. We have access in our measurements to temperatures down to 2
K and magnetic fields up to 7 T and we measured longitudinal magnetoresistance as well as Hall signal. Spin textures such
as skyrmions have been reported in heterostructures of Cr2Te3/Bi2Te3 due to interface Dzyaloshinskii-Moriya interaction
[7]. We find non trivial phenomena including a change of sign of the anomalous Hall contribution with temperature (Fig.
E), which we correlate to a charge transfer between the 2D substrate layers and the vdW ferromagnet. The origin of the
effect is related to the Berry phase of Cr2Te3. When the Fermi level of the system is changed by proximity of a 2D material
or disorder, the temperature dependence of the anomalous Hall effect is tuned (Fig. E). We also report a “bump” in the Hall
resistivity at the coercive field and we attribute these observations as possible topological effects or as two Hall contributions
with opposite signs. Finally, we estimate the spin-orbit torques electrically generated in the 2D layers and acting on the
vdW Cr2Te3 ferromagnet.
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Figure 1: A) RHEED images during growth along two main crystal axis of the substrate. a) on grown WSe2 b) After
the growth of the ferromagnet at 300C. c) After annealing at 400C B) TEM image with the presence of a vdW gap at the
interface and Supercells and slabs used for ab initio calculation C) Magnetization curves of 5 ML Cr2Te3 measured at 5 K.
D) Magnetic anisotropy energy as a function of out-of-plane strain. DFT calculations confirm the experimental trend. E)
Anomalous Hall contribution of five layers Cr2Te3 as function of temperature for 2 samples on sapphire.
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Recently, long-range magnetism was reported in 2D dimensional materials [1, 2]. This has triggered immense research
on exploring new phenomena [3, 4]. In particular, vdW magnets containing heavy elements like FexGeTe2 (FGT) [4–7]
compounds – hence with potentially a sizable spin-orbit coupling (SOC) – are strong candidates for hosting perpendicu-
lar magnetic anisotropy (PMA) and Dzyaloshinskii–Moriya interaction (DMI). In FGT compounds, the Fe content largely
determines the magnetic anisotropy (strong PMA in Fe3GeTe2, often easy plane magnetization in Fe5GeTe2) and the TC
(230 K in Fe3GeTe2, 300 K in Fe5GeTe2). A variety of magnetic behaviors was observed in FGT , with reports of ferrimag-
netism/ferromagnetism, the occurrence of metastable magnetic configurations dependent on the thermal history, and a
significant influence of Fe vacancies [albarakati2019antisymmetric, 4–8].

These observations call for the development of new strategies to engineer and understand the magnetism in a controlled
way. One approach would rely on epitaxially grown continuous films with high crystallinity and PMA down to the single
monolayer. This requires a refine expertise and provides impressive results as demonstrated in [9, 10] for example. We
started recently another approach based on exfoliation, as developed in [11], with the aim to perform a complete investiga-
tion of the magnetic properties of the FGT flakes in temperature : hysteresis loops, magnetic imaging by magneto-optical
Kerr microscopy and direct DMI measurements by Brillouin Light Scattering. Optical microscopy and AFM experiments can
be also performed to identify details and measure the thickness of suitable flakes.

(a) (b) (c)

(d) (e) (f)

Figure 1: Exfoliated Fe3GeTe2 flakes : (a) Optical image of a F3GT flake of thickness ≈38 nm in its center (From AFM
-insert) and 15 µmm maximum in width. (b) Hysteresis loops measured by PMOKE versus temperature. (c) Magnetic
domains without applied field at 110 K. (d) AFM image (15x15µm2) of a F3GT flake of thickness ≈50 nm in its center. (e)
Hysteresis loops measured by PMOKE versus temperature. (f) No magnetic domains without applied field at 110 K.

We fabricated FGT flakes by exfoliating commercial bulk crystals onto Si/SiOx substrate. Different exfoliation protocols
(scotch tapes, PDMS, temperature) have been used to obtain large and as thin as possible FGT flakes. Once the FGT
flakes have been deposited on the substrate, the samples were put in an oxygen plasma for a few minutes to remove any
residual traces of tape. This cleaning method most likely causes oxidation of the FGT flakes but all other chemical cleaning
methods gave unsatisfactory results. We could prepare both F3GT and F5GT flakes, with a large panel of thicknesses and
lateral sizes. Both families exhibit ferromagnetic behavior. As expected from literature, we observe a decrease of TC with
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the thickness. F5GT flakes exhibit a larger TC than F3GT ones. Regardless of the Fe content, most flakes are out-of-plane
magnetized. Depending on the thickness, square and remnant hysteresis or domains are observed without magnetic field.
Investigations are ongoing (including EHE and contacting experiments to inject currents) and we will discuss these and the
following results during the colloquium.

(a) (b) (c)

Figure 2: Exfoliated Fe5GeTe2 flakes (a) Hysteresis loops measured by PMOKE versus temperature in a 120 nm thick (a)
and 45 nm thick (b) flake. (c) Optical image of a Hall cross of Fe5GeTe2 with 3 µm wide contacts for EHE.

This work was supported by the Agence Nationale de la Recherche (ANR) through the project ACAF (ANR-20-CE30-
0027), and by the public grant overseen by the ANR as part of the ‘Investissement d’Avenir’ programme (LABEX NanoSaclay,
ANR-10-LABX-0035 CHIVAWAA).
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Spintronics is a paradigm focusing on spin as the information vector in fast and ultra-low-power non- volatile devices
such as the new spin-transfer-torque Magnetic Radom Access Memory (MRAM). Beyond its widely distributed applications,
spintronics aims at providing more complex architectures and a powerful beyond CMOS solution from storage to quan-
tum information. The recent discovery of graphene, and other 2D materials such as hexagonal boron nitride (h-BN) or
dichalcogenides (WS2...), has opened novel exciting opportunities in terms of functionalities and performances for spin-
tronics devices[1]. Typically, graphene has shown a strong versatility by providing both highly efficient spin information
transport properties[2, 3] and potential for strong spin filtering in 2D- MTJs[1]. However, the lack of a gap has led to
extensive research to find a semiconducting sibling of graphene that would display its good properties in addition to a gap.

In this direction, Black phosphorus (BP) has attracted an explosive interest since 2014 as it displays major properties
for (opto-)electronic devices: (a) high hole and electron mobilities in thin layers exfoliated BP (about 3000 cm2/Vs) and
(b) high ON/OFF current ratio (about 105) in a transistor configuration with ambipolar characteristics. Additionally, the
bandgap of BP is predicted to be widely tunable in relation to the number of stacked layers and remains direct from the bulk
to the monolayer. Thanks to the natural low spin-orbit coupling of phosphorus, BP is expected to present highly efficient
spin information transport, similarly to graphene [2, 3] but with the addition of a band gap. This difference with graphene
is fundamental for the implementation of spin manipulation schemes and the experimental realization of a spin gate.

However, the key issue for BP devices has been the handling of its degradation under atmospheric conditions. While
the mechanism has been well understood[4] this still remains a clear problem for applications. We will present a recently
developed in-situ approach to circumvent the issue of degradation under atmospheric conditions [5, 6]. By passivating the
BP without exposing it to air we achieve protection down to the monolayer with 1 nm Al2O3. We will further discuss how
this passivation layer can play the role of the tunnel barrier required for efficient spin injection [2, 3, 6] and provide a high
potential path for spintronics applications from vertical to lateral devices. In addition, we will talk about the demonstration
of BP integration into Co/BP/Co spin valves showing large spin signals. We will discuss a novel selective spin-splitted
transport mechanism as supported by first-principle theoretical investigation. This illustrate the potential of BP for spin
injection/detection, strongly supporting BP’s vision as an outstanding platform for spintronics.
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The replacement of bulk materials with two-dimensional (2D) ones based on van der Waals (vdW) layered structures
holds promises for overcoming the approaching quantum limit in electronic device scaling. Among these 2D compounds,
magnetic materials, initially discovered in 2017 with exfoliated flakes of Cr2Ge2Te6 [1] and CrI3 [2], are of utmost interest.
Their discovery opened up a rich avenue for using the electron spin as an additional degree of freedom in 2D materials,
but also leading to the identification of other 2D vdW magnets, especially the metallic ones. Among these, the FeNGeTe2
(FGT) ternary compounds have attracted significant attention due to their ferromagnetism with strong magnetic anisotropy
near room temperature: perpendicular magnetic anisotropy (PMA) up to 230 K and easy plane magnetic anisotropy up to
290 K for Fe3GeTe2 (F3GT) [3] and Fe5GeTe2 (F5GT) [4], respectively. Notably, the Curie temperature (Tc) and magnetic
anisotropy of FGT materials can be easily tailored, making them highly desirable for specific applications. To achieve this,
various methods are employed such as ionic gating, ion implantation, patterning methods, and doping/substitution with Co
for instance [5]. An alternative approach is through interface engineering, especially in full vdW heterostructures that offer
interface abruptness and cleanliness beyond what is achievable with traditional metals or oxides [6]. However, limited
studies have been conducted on these magnetic systems, mostly due to the complexity of the film growth process. The
most accurate technique for film growth is molecular beam epitaxy (MBE), which allows for reliable and fully controlled
deposition of high-quality films over large areas.

In this context, our focus is on the all-epitaxial F5GT/F3GT heterostructures, with a particular emphasis on varying the
stacking order and layer thicknesses down to their 2D limits.

We performed MBE growth of highly-crystalline F3GT and F5GT vdW magnets, both in single and bilayer forms, and
closely investigated their structural and magnetic properties using in situ reflection high-energy electron diffraction (RHEED)
and ex situ x-ray diffraction (XRD), as well as magneto-optical Kerr effect (MOKE) techniques, respectively. To explore and
fully master the growth conditions, we varied several deposition parameters, including deposition flux, deposition temper-
ature, and annealing conditions. We discovered more restricted conditions for F5GT growth compared to F3GT, probably
reflecting its thermodynamic instability. This is a crucial observation since the film growth quality significantly affects the
magnetic properties. While a standard deposition process typically results in the expected magnetic properties for bulk
materials with thicknesses above a few monolayers (ML), such as PMA with a large magnetic coercive field for F3GT and
easy-plane magnetic anisotropy with a small coercive field for F5GT, we also observed an increase in their Tc up to 400 K
after optimization. This was accomplished by deliberately and carefully varying the growth conditions. When combining
two FGT compounds in a vdW heterostructure, numerous properties were observed varying the stacking, including a de-
coupled behavior for thick layers for instance, and revealing the simultaneous presence of both robust easy-plane and PMA
at their respective ordering temperatures. In specific conditions, we also detected a ferromagnetic behavior above room
temperature, retaining strong PMA. A typical example of this highly crystalline heterostructure is shown in the Fig. 1 with
distinct and continuous RHEED diffraction streaks in (a), intense diffracting peaks of the (000l) planes of the vdW layers in
(b), and the magnetic behavior in (c).

The successful stacking of FGT films opens up opportunities for the design and fabrication of ultra-compact advanced
spintronic devices with enhanced functionality and performance thanks to the tunability of magnetic properties. These
findings not only highlight the potential of FGT but also serve as a prototypical example that can be extended to other 2D
systems.
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Figure 1: Structural and magnetic properties of an epitaxial Al2O3(0001)//F5GT(6ML)/F3GT(6ML) heterostructure. (a)
RHEED patterns collected at the growth temperature (650 K) along the [11-20] azimuth, (b) specular X-ray diffraction scan
and (c) in-plane (IP) and out-of-plane (OOP) remanence magnetization (Mr) over saturation magnetization (Ms) recorded
with MOKE. Inset: corresponding magnetic hysteresis loops at 130K.

References

[1] Cheng Gong, Lin Li, Zhenglu Li, et al. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals.
Nature 546, 265–269 (2017).

[2] Bevin Huang, Genevieve Clark, Efrén Navarro-Moratalla, et al. Layer-dependent ferromagnetism in a van der Waals
crystal down to the monolayer limit. Nature 546, 270–273 (2017).

[3] Zaiyao Fei, Bevin Huang, Paul Malinowski, et al. Two-dimensional itinerant ferromagnetism in atomically thin Fe3GeTe2.
Nature materials 17, 778–782 (2018).

[4] Mario Ribeiro, Giulio Gentile, Alain Marty, et al. Large-scale epitaxy of two-dimensional van der Waals room-temperature
ferromagnet Fe5GeTe2. npj 2D Materials and Applications 6, 10 (2022).

[5] Andrew F May, Mao-Hua Du, Valentino R Cooper, and Michael A McGuire. Tuning magnetic order in the van der
Waals metal Fe5GeTe2 by cobalt substitution. Physical Review Materials 4, 074008 (2020).

[6] K S Novoselov, Artem Mishchenko, o A Carvalho, and AH Castro Neto. 2D materials and van der Waals heterostruc-
tures. Science 353, aac9439 (2016).

115



Poster 1.40, November 14th, 16h30–18h30

TMD Engineering of 2D-Magnetic Tunnel Junctions –
From Barriers to Electrodes

Frederic Brunnett1, *, H. Wei1, J. Peiro1, V. Zatko1, S. M.-M. Dubois2, M. Galbiati1, O. Bezencenet3, B.
Servet3, M. Och4, C. Mattevi4, F. Godel1, J.-C. Charlier2, M.-B. Martin1, B. Dlubak1, and P. Seneor1

1Unité Mixte de Physique CNRS/Thales-Université Paris-Saclay, Palaiseau, France
2Institute of Condensed Matter and Nanosciences (IMCN), Université Catholique de Louvain,

Louvain-la-Neuve, Belgium
3Thales Research and Technology, Palaiseau, France

4Department of Materials, Imperial College, London, UK
*Frederic.Brunnett@cnrs-thales.fr

Spin-based electronics has already revolutionized data storage and readout technologies. Nowadays it targets a variety
of new architectures like embedded MRAMs, spin logics or neuromorphic computing, which makes it one of the most
promising post-CMOS approaches. Meanwhile, 2D materials and their combination in heterostructures have opened novel
exciting opportunities in terms of functionalities and performances for spintronics devices. The broad family of 2D materials
offers many possibilities to engineer the properties of layered stacks and devices in particular via interfacial exchange and
proximity effects. One very attractive topic is the field of MTJs based on 2D materials (2D-MTJs).[1]

Indeed, graphene has proved its strong potential for MTJs with evidence for spin-filtering through band structure or
strong hybridization effects (i.e. spinterface) achieving a record spin polarization of up to -98% . In parallel, advances
within the broad Transition Metal Dichalcogenides family of 2D semiconductors and recent 2D ferromagnets have opened
new possibilities to tailor spintronics properties further. As an example, we will show how TMDs could be integrated into
a hybrid spin-valves 2D-MTJs and show layer-dependent spin filtering effects. We can show that the spin polarisation can
be reversed depending on the number of layers. The layer thickness largely influences the band structure and thus allows
control over the open spin channels for vertical electron transport. We will also discuss how to reach one step further with
the large scale integration of these materials into tailored 2D heterostructures. For this we developed 2D ferromagnets
based on Fe3+xGeTe2. We will show that they can be grown in large scale using Pulsed laser deposition (PLD) and reach
curie Temperatures (TC) above room temperature (RT) while being integrated with other TMDs. Thus, allowing the design
of in-situ fabricated devices with artificial properties. We will highlight how these PLD grown ferromagnetic 2D layers could
further reinforce the 2D materials family’s potential for 2D-MTJs.[2–5]
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Magnetic skyrmions – topologically protected chiral spin structures with particle-like properties – show great promise for
spintronic applications. The recent discovery of two-dimensional (2D) magnets opened new opportunities for topological
spin structures in atomically thin van der Waals (vdW) materials [1–4]. In this talk, using first-principles and atomistic
spin simulations, I will present how external stimuli can efficiently tune different magnetic interactions in Fe3GeTe2 (FGT)
vdW heterostructures [5]. In particular, the Dzyaloshinskii-Moriya interaction (DMI) is highly tunable by strain, leading
to a very large DMI. After that, I will further show that the efficient control of the DMI, the exchange coupling, and the
magnetic anisotropy energy by strain allows stabilizing zero-field skyrmions in FGT vdW heterostructures with diameters
close to 10 nm, becoming technologically competitive [6]. Finally, if time allows, I will propose a vdW tunnel junction with
nonmagnetic electrodes as an ideal sub-5nm skyrmion platform with easy implementation into device architectures (i.e.,
skyrmion racetrack memories). I will further demonstrate that the proposed tunnel junctions exhibit a reliable all-electrical
detection scheme for magnetic skyrmions due to extremely large noncollinear magnetoresistance.

Figure 1: The emergence of magnetic skyrmions in Fe3GeTe2/gemanene by strain.
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For applications in spintronics, spin-orbit torque (SOT) is an efficient mechanism to switch a magnetic layer electrically.
By its nature, SOT is limited to controlling in-plane magnetization. An additional external magnetic field is often used to
switch an out-of-plane magnetization, which is more relevant for applications. Recently, it has been shown that systems with
a trigonal 3m (C3v) symmetry group and Fermi surface warping can replace an external magnetic field to facilitate field-
free spin-orbit-torque switching [1]. Based on ab initio calculations, we show that CrXY dichalcogenide Janus monolayers
[Fig. 1(a)] have all three ingredients necessary for field-free SOT switching: the 3m symmetry, Fermi-surface warping, and
a prominent Rashba splitting [Fig. 1(b)].

Figure 1: (a) The structure of 1T-CrXY monolayers. (b) The Fermi-level spin texture of CrSeTe showing prominent Rashba
effect, hexagonal warping and second-order spin-orbit coupling terms. (c) Intrinsic anomalous Hall conductivity calculated
from the Wannier tight-binding models.

The reciprocal-space spin textures exhibit complex forms which are shown to originate from higher-order terms in the
in-plane momentum expansion of the spin-orbit Hamiltonian. With Wannier tight-binding models derived from the ab initio
ground state, we calculate the resulting transport properties, including the different types of spin-orbit torques and the
intrinsic anomalous Hall conductivity [Fig. 1(c)].
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Spin-crossover (SCO) molecules are metal-organic complexes that can be switched between a low-spin (LS) and high-
spin (HS) state under the application of various stimuli such as pressure, temperature, light etc.[1] Deposition on a substrate
can greatly affect the SCO properties.[2, 3]

A new neutral spin crossover complex Fe(neoim)2has been synthesized and successfully evaporated and deposited intact
on Ag(111). In addition the Fe(neoim)2molecule exhibits a spin crossover switch when a sufficient voltage is applied
between an STM tip and the metallic surface while the Ni(neoim)2does not show such transition. Surprisingly the molecule
fragments on a gold surface which is usually considered as the most "noble" metallic surface due to its inertness.

HS LS
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imidazole imidazole imidazole imidazole
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LS

b)a) c)

Figure 1: Sideview of a) an isolated Fe(neoim)2 molecule and deposited on Ag(111) for both b) HS and c) LS states as obtained from DFT optimization.
The flatteining of the molecule is clearly visible when adsorbed on the metallic substrate.

A very extensive Density Functional Theory (DFT) study using hybrid functional and van der Waals (vdW) correction
will be presented to explain these results. The adjustment of the hybrid functional to reproduce correctly the LS-HS energy
balance will first be discussed. Then we will show that the Fe(neoim)2is drastically distorted by the interaction with the
substrate (see Fig. 1) in particular by vdW forces that play an essential role in the energetic of this system. In particular
dispersion interaction is decisive in the relative stability between HS and LS, favoring HS due to the largest flexibility of
the HS configuration. In contrast Ni(neoim)2does not exhibit any spin state switching. A detailed analysis to trace back
the fragmentation mechanism of Fe(neoim)2on gold will be provided. Interestingly the fragmentation originates from the
combination of vdW interaction, which is often believed to be of secondary importance, and the specific electronic structure
of Au (compared to Ag) due to scalar relativistic effects[4]. More specifically, the iron-gold interaction (significantly stronger
than iron-silver) is at the origin of the fragmentation. These findings align seamlessly with the experimental results.[5]
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Due to the strong interactions among the spin, orbital, and lattice degrees of freedom, the transition metal oxides with the
spinel-type structure, AB2O4 (with A, B= Fe, Cr, Ni. . . ), exhibit complicated magnetic and structural phase transitions and
have attracted extensive attention in past years [buschow2003handbook, lee2002emergent]. In this structure, the cations
(e.g. Fe2+/Fe3+, Ni2+, Cr3+) occupy either the tetrahedrally coordinated (Td) sites or the octahedrally coordinated (Oh) sites
with ferro- or antiferromagnetic interactions. The chromites, Fe3-xCrxO4 (with the parent compounds: FeCr2O4 , Fe2CrO4,
NiCr2O4), or the ferrites (Fe3O4, NiFe2O4) are considered significant due to their potential applications over a broad spec-
trum (ferrimagnetic, ferroelectric, multiferroic, or photoconductive behavior) [wang2003situ, chambers2017electronic,
ma2014magnetic, hoppe2015enhanced, pinho2023stoichiometry].

In addition, the corrosion of Fe-Cr-Ni alloys at high temperature in an aqueous medium leads to complex phenomena:
mixing passivation, dissolution and precipitation. It gives rise to a multiphase oxide layer for which several studies have
emphasized the presence of a spinel-type structure [sennour2010detailed, marchetti2015xps]. This spinel oxide phase
forms a continuous corrosion layer. It therefore plays a major role in corrosion processes because it governs the transport
between the alloy and the aqueous medium. Surprisingly, the physical properties of (Ni,Fe,Cr)3O4 oxide layers are poorly
documented because of its variable composition, complex microstructure and low thickness. Their magnetic properties
critically depend on the site occupation and composition changes which enables the use of the magnetic response as a fine
marker for understanding these materials.

To tackle the issue of complex microstructure and variable composition, we grow, above Al2O3 (111), model Fe-rich
Fe3-x-yCrxNiyO4 (111) and Cr-rich Cr2-xFex+yNi1-yO4 (111) spinel layers by oxygen assisted molecular beam epitaxy (O-
MBE). These layers are characterized both in-situ and ex-situ. The epitaxy and structure of layers are checked through
in-situ diffraction, which shown nice streaks. This is characteristics of 2D growth mode. Then, the composition is checked
by spectroscopy, both in-situ and ex-situ. And finally, the film thickness, structure and magnetic properties are verified
through respectively reflectivity, diffraction and magnetometry. To determine the site occupation and charge of cations,
XAS/XMCD measurements has been realized (Soleil Synchrotron). These experiments has been simulated with Crystal
Field multiplet calculations to have the occupation and charge of each element with the Quanty code [lu2014efficient].

Our results indicate an occupation of the Oh sites for Ni in the Fe-rich region, as opposite in Cr rich region were Ni
occupy Td sites. More surprisingly, Fe is found in the form Fe2+ in the Td site only if the sum of Ni and Cr in the ternary
composition percentage rise above 33 %. Below this limit, Fe is shared between Oh and Td sites, with the Td site occupied
only by Fe3+ and Oh site shared by Fe2+ and Fe3+ .
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The development of frequency-adaptable electromagnetic wave absorbents has become a subject of increasing interest
for microwave applications. Composites made up of chemically substituted M-type hexaferrite particles dispersed into a
polymer matrix are promising absorbents with frequencies operating at Ku, K and Ka bands (from 12 GHz to 40 GHz). In
order to serve as performant materials, these are required to present a strong absorption in a broad frequency band. In the
context of this work, chemical substitution is presented as a tool allowing to modify the shape, the band width, and the
frequency of the absorption spectra of BaMxM’xFe12-2xO19 composites.

Previous studies have demonstrated that the resonance frequency of BaMxM’xFe12-2xO19 ferrites can be modified via
substitution of Fe3+ ions by other transition metal cations [1] like Mn2+ and Ti4+. The substitution of Fe3+ by these ions
allows to modify the anisotropy field 2K1/Ms, where K1 is the first-order uniaxial anisotropy constant and Ms the saturation
magnetization. Consequently, the resonance frequency of the magnetic particles is shifted through Kittel’s relationship for
the natural ferromagnetic resonance (FMR) [2]. Although existing numerous evidence of this phenomena, no explanation
of the role of each substituent has been provided in literature, and there are many questions that have not been answered
yet. The extraction of micromagnetic parameters from polycrystalline samples remains also a challenging task.

(a) (b)

Figure 1: (a) Evolution of first order magnetic anisotropy with chemical substitution of BaTixMnxFe12-2xO19 ferrite obtained
from FMR and from the Law of Approach to Saturation (LAS) Analysis (b) Real (above) and Imaginary (below) experimental
magnetic permeability spectra for BaTixMnxFe12-2xO19 composites with x=0.4 and x=1.2.

For instance, for most ferrites belonging to this family a spin reorientation transition is expected over a certain degree of
chemical substitution [3]. This transition is mainly due to a chemically induced change in the state of the magnetocrystalline
anisotropy (from c-axis to c-plane) accompanied by a gradual increase of the second-order anisotropy constant K2. However,
such transition has not been identified for BaTixMnxFe12-2xO19 ferrites. In addition, scarce results have been reported for
extracting K1 and K2 values from measurements on polycrystalline powder or composite samples.

Similarly, previous authors have reported that the magnetic resonance spectra of BaTixMnxFe12-2xO19 composites pos-
sesses two different resonance frequencies separated by 6 GHz in the K-band [2]. No clear explanation of the origin of the
second peak is provided. This peak could be due to the presence of a second resonance mode related to the magnetic texture
supported by the particles or to a distribution of different magnetocrystalline anisotropies within the polycrystalline sample
due to chemical inhomogeneities and concentration gradients.
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This work aims to combine micromagnetic simulations with experimental magnetic and structural characterizations to
provide an explanation of the phenomena involved in the resonance spectra of chemically substituted BaTixMnxFe12-2xO19
composites.

Powder samples of BaTixMnxFe12-2xO19 with x ∈ [0.0, 2.0], were synthesized by a conventional ceramic technique and
were incorporated into a polymer matrix. The magnetic permeability spectra were measured by a zero-field microwave
reflection-transmission method using an Anritsu vector network analyzer operating from 1 MHz to 43.5 GHz. The micro-
magnetic parameters (Ms, K1) were extracted from SQUID MPMS 3 Magnetometer measurements applying the Law of Ap-
proach to Saturation (LAS) for the last two parameters (see figure 1 (a)) [4]. The values of the phenomenological damping
constant and the gyromagnetic ratio for different degrees of substitution were estimated from broad-band FMR measure-
ments. In parallel, micromagnetic simulations were performed for BaMxM’xFe12-2xO19 assuming different morphologies:
hexagonal column, core-shell and uniform and bi-domain spherical particles to explore the different configurations of the
particles that could give rise to more than one resonance mode (see Figure 2).

It has been demonstrated that there are two aspects that drive the tuning of the permeability spectra of BaTixMnxFe12-2xO19
composites: (i) chemical substitution is responsible for the modification of the frequency of the main FMR mode (see Figure
1 (b)), and (ii) particle morphology, size and composition, modify the shape of the absorption spectra and induce additional
modes (see Figure 2). The current work explores this hypothesis for a range of x comprised between 0.0 and 2.0 where a
large variation of K1 is observed Figure 1 (a).

Figure 2: Simulated magnetic susceptibility spectra of isolated BaMxM’xFe12-2xO19 particles having different morphologies
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In this study we show that a Pt dusting layer of a nominal thickness of 0.09 nm inserted at the interface between
CoFeB and MgO in a Ta/CoFeB/MgO/HfO2 induces in-plane magnetic anisotropy in the stack, which can be switched to
perpendicular magnetic anisotropy (PMA) through magneto-ionic gating (see figure). The polycristalline structure of the
MgO layer observed by transmission electron microscopy in the as-grown state is preserved after gating [1], indicating a
potential magneto-ionic mechanism mediated by oxygen motion through grain boundaries.

Interestingly, this system does not show evidence of the typical oxidation involved in magneto-ionics relying on voltage-
induced migration of oxygen species [2]. XAS measurements show a strong and reversible change in the oxygen edge
upon gate voltage exposure, showing that the magneto-ionic process is mediated by the incorporation and release of
oxygen species. However, XMCD measurements show that the voltage-gate induced spin-reorientation transition in the
CoFeB/Pt/MgO stacks is not accompanied by any significant reduction in the magnetic moment of neither Fe nor Co.

This magneto-ionic mechanism is attributed on the one hand to the crystallinity of the MgO barrier, and on a likely
change in the oxidation potential of the Co and Fe atoms at the oxide interface through the interaction with the Pt atoms
in the dusting layer. This shows that the fine-tuning of the chemistry at the interfaces of magneto-ionic stacks is important
for the design of magneto-ionics materials and devices.

Figure 1: Anomalous Hall effect signal at different ionic-liquid gate voltages in Ta/CoFeB/Pt/MgO/HfO2 (left), and a cartoon
of the device geometry (right).
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Transition metal oxides constitute an intriguing playground within the strongly correlated materials thanks to their

diverse degrees of freedom that are charge, spin, orbital and lattice. Spinel vanadates, of general formula AV2O4 (A =
transition metal), captured the attention in the condensed matter community because thanks toof their versatile magnetic
and electrical properties. Their structure consists of a diamond sublattice of tetrahedrally coordinated A2+ ions combined
with a geometrically frustrated pyrochlore sublattice formed by the octahedrally coordinated V3+ (3d2, S=1) ions. Among
all spinel vanadates, CoV2O4 (CVO) is a unique spinel oxide. It is a normal spinel having a cubic structure with Fd3 m̄
symmetry and a lattice parameter of a = 8.407 Å [1] . The reason why the spinel CoV2O4 grabbed special attention is
because not only does it have a pyrochlore sublattice formed by the magnetically active V3+ atoms which are geometrically
frustrated, but it also has the shortest V-V distance among all spinel vanadates and stands at the crossover from between
insulating to and itinerant behaviours which makes it very close to a Metal-Insulator Transition (MIT) compound. These
two main assets make CVO a potential candidate for several low power electronic devices, such as the Spin-Orbit Torque
Magnetic Random Access Memories (SOT-MRAM) or the Mott-transition based Resistive Random Access Memories (RRAM).

Unlike the bulk form, CVO thin films have been very scarcely studied, with only four publications and non-converging
results concerning the crystallographic system in which the film crystallizes, which is reported to be either orthorhombic
[2] or tetragonal [1] . Beside the fact that all films were grown in a compressive state, either on SrTiO3 (STO) or on
(La0.3Sr0.7)(Al0.65Ta0.35)O3 (LSAT) [1] ,[2] substrates, which rather pushes the system into the insulating state, the films
were surprisingly not grown from a CoV2O4 target, but from a CoV2O6 one, probably due to the fact that CoV2O4 is difficult
to synthesize. The originality of our approach, relies both on the choice of the target from which the deposition is made, as
well as on the choice of the substrates.

Our target is a CoV2O4 spinel single-phased target which we successfully elaborated through a solid state chemistry op-
timized method. Our aim is to control and manipulate the spins orientation and frustration as well as the V-V distances by
growth engineering. We use the pulsed laser deposition (PLD) technique to grow CVO thin films onto well-chosen substrates
that will exert different kinds of strain (compressive/tensile) in order to see their effect in terms of structural, magnetic and
electrical properties of the CVO thin films.

Some depositions were thus performed on MgO substrates, in addition to the STO ones, in order to probe the new strain
state (tensile) such a deposition allows. We showed that for both systems, CVO//MgO as well as CVO//STO, the elaborated
CVO thin films adopt a tetragonal structure but with different in plane (IP) and out-of-plane (OOP) distortions and show
different magnetic anisotropies. For instance, with the CVO//MgO system, the similarity of the hysteresis loops measured at
50 K in both IP and OOP configurations indicates the absence of anisotropy with very close coercivities and almost the same
saturation magnetizations (See Fig. 1). On the other hand, the hysteresis loops of the system CVO//STO also performed
at 50 K, clearly present an important anisotropy between the IP and OOP signals (See Fig. 2). It seems that there are two
decoupled magnetic phases, as indicated by the wasp-waisted OOP hysteresis loop and the fact that the IP magnetization
does not reach as high a value as the OOP one, even at the highest reachable field of 7 T. A part of the layer seems to be very
hard to saturate IP. The CVO//STO system thus shows a clear perpendicular magnetic anisotropy (PMA), its c-axis direction
being easier than the IP ones. This result goes well with our ambition to further elaborate heterostructures Pt/CVO//STO
and study their magneto-transport properties with the hope of chasing a strong spin Hall magnetoresistance. Further studies
must be conducted to confirm the existence of multiple magnetic phases and better characterize them.
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Figure 1: M vs. H hysteresis loops for the system
CVO//MgO in both IP and OOP configurations.

Figure 2: M vs. H hysteresis loops for the system CVO//STO
in both IP and OOP configurations.
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Magneto-ionics is a rapidly growing field in spintronics that offers great promise for the development of high-performance
devices for information storage and processing. The ability to manipulate magnetic properties through ionic motion in
materials in a non-volatile way, rather than the volatile purely electronic means, presents exciting opportunities for the
development of non-volatile and low-energy memory devices. CoFeB alloys are among the most technologically relevant
materials for spintronics, therefore, the integration of magneto-ionics into CoFeB-based devices can rapidly lead to new
functionalities and enhanced performance.

In Ta/CoFeB/HfO2, ionic gating induces migration of oxygen-rich species within the stack, leading to different magneto-
ionic regimes and spin-reorientation transitions. Our previous studies [1] show that an irreversible regime I exists when
going from an under-oxidised to an optimally oxidised CoFeB/HfO2 interface, where perpendicular magnetic anisotropy
(PMA) is observed, while a highly reversible and cyclable regime II is present when going from PMA to over-oxidised. This
behaviour is attributed to a non-equivalent distribution and binding of the mobile oxygen species at the surface of the mag-
netic layer in the different magneto-ionic regimes.

Hall-bar devices containing a solid state gate were fabricated using the same Ta/CoFeB/HfO2 wafer as in [1] by adding
an HfO2 layer grown by atomic layer deposition (ALD), as a replacement for the ionic liquid gate. Interestingly, in these
devices the irreversible regime I is completely absent in solid state devices most likely due to the impact of ALD growth
and/or fabrication on surface chemistry, and in turn, on the magneto-ionic performance. The devices show PMA in the
as-fabricated state, in contrast to the in-plane anisotropy observed in the as-fabricated ionic liquid gate device, and the
underoxidised present in the as-grown wafer can not be accessed with the available range of gate voltages, which is com-
patible with our previous studies. Nevertheless, the regime II in solid state devices can be accessed and is fully reversible,
as found in the ionic-liquid gating experiments (see Figure 1). The solid state devices show faster dynamics compared to
ionic liquid gating, due to the elimination of the slow ionic migration inside the ionic liquid, revealing the kinetics of only
the ionic motion inside the oxyde/ferromagnetic stack.

Figure 1: A series of Hall measurements were conducted after sequentially applying a gate voltage, with negative values
showcased on the left and positive ones on the right. The steps of intermediate oxidation exhibit remarkable similarity in
both directions, the regime II is fully reversible. A schematic of the device in represented in the inset.

This highlights the importance of characterising the differences between the ionic-liquid and solid-state gating methods
for disentangling potential effects linked to the device design and fabrication from the intrinsic magneto-ionic mechanisms.
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Parmi les familles de matériaux considérées pour les applications thermoélectriques, les chalcogénures occupent une
place de choix, avec l’exemple emblématique de Bi2Te3, meilleur matériau utilisé et commercialisé à ce jour pour ces ap-
plications. De nouvelles familles sont étudiées à l’échelle internationale et parmi elles la structure spinelle apparaît très
intéressante car elle présente des ZT pouvant atteindre 0.5 – 0.6 à 700K, et des comportements magnétiques et électron-
iques très variés peuvent être obtenus selon la composition chimique AM2X4 (A= Cu, Fe, . . . ; M= Cr, V,. . . ; X=O, S, Se,..).
Les propriétés thermoélectriques des spinelles peuvent être modifiées par dopage, mais le magnétisme peut également jouer
un rôle important, notamment sur le coefficient Seebeck.

Cette contribution porte sur l’étude magnétique des matériaux chalcogénures aux propriétés thermoélectriques, et plus
précisément des matériaux thiospinels à base de fer tel que le composé FeCr2S4. Il repose sur une approche combinant des
mesures thermoélectriques et magnétiques macroscopiques couplées à la détermination du magnétisme à l’échelle locale
par spectrométrie Mössbauer du 57Fe, dans le but de comprendre les couplages entre spins, magnétisme et propriétés
thermoélectriques.

Le composé FeCr2S4 cristallise dans une structure cubique, où les ions Fe2+ et Cr3+ occupent des sites tétraédriques et
octaédriques, respectivement [1]. Ce composé est un semi-conducteur ferrimagnétique avec une température de transition
magnétique Tc = 170 K [2]. Dans l’état paramagnétique au-dessus de Tc , le spectre Mössbauer se compose d’une raie
Lorentzienne (voir Fig. 1), indiquant un environnement symétrique pour les ions Fe2+ en accord avec la structure cubique du
composé. En-dessous de Tc , la mise en ordre magnétique progressive se traduit par des interactions hyperfines magnétiques
et quadripolaires combinées, liées à un gradient de champ électrique induit par effet de spin, et une phase magnétique
hélicoïdale apparaît en dessous de 60 K [3]. L’influence de la substitution de Fe par Cu sur les propriétés magnétiques
seront étudiées en fonction de la température par magnétométrie SQUID et spectrométrie Mössbauer du 57Fe.

Figure 1: (a) Structure cristallographique de la spinelle AM2X4 montrant les sites octaédriques MX6 et tétraédriques AX4,
(b) Spectres Mössbauer de FeCr2S4 mesurés à T=295 K et à T=40 K.
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Yttrium iron garnet (Y3Fe5O12, YIG) is a prototypical material in spintronics due to its exceptional magnetic properties.
To exploit these properties high quality thin films are needed. Multiple deposition techniques are known for the fabrication
of YIG. Whereas techniques like liquid phase epitaxy or high temperature pulsed laser deposition lead directly to single
crystalline YIG thin films, deposition techniques like low temperature pulsed laser deposition and sputter deposition produce
amorphous films, which need a post annealing step to induce crystallization. However, not much is known about the exact
dynamics of the formation of crystalline YIG out of the amorphous phase.

First, we conduct an extensive time and temperature series to study the crystallization behavior of sputtered amorphous
YIG thin films on different substrates and extract the corresponding crystallization velocities as well as the activation energies
needed to promote vertical crystallization (cp. Fig. 1, (a)). We find vertical crystallization velocities of 0.84 nm min−1 at
600 ◦C for YIG on GGG, 0.27 nmmin−1 at 600 ◦C for YIG on YAG and 16.7 nmmin−1 at 700 ◦C for YIG on SiOx, respectively.
Together with the activation energies these can be used to generally describe the crystallization process of YIG on GGG, YAG
and arbitrary substrates like SiOx. Therewith, we are able to extrapolate the time needed for a fully crystalline film at any
temperature and for any film thickness.

Taking the knowledge of these crystallization regimes then allows us to determine a temperature window where solid
phase epitaxy from a lattice matched substrate is possible, while nucleation is still kinetically hindered. Within this window
the formation of single crystalline YIG on an amorphous SiOx layer by lateral crystallization with a rate of 0.17 nmmin−1 at
600 ◦C is possible, while simultaneously avoiding the formation of any polycrystalline grains (cp. Fig. 1, (b)). Understanding
these dynamics allows for a controlled and precise manufacturing of single crystalline YIG thin films on arbitrary substrates
across large length scales and therefore pave the way for engineering more complicated non planar structures.

YAG

SiOx

a-YIG

crystalline YIG

YAG

SiOx

a-YIG

crystalline YIG

(a) (b)

Figure 1: From the lattice matched substrate, the amorphous YIG layer (a-YIG) first crystallizes vertically as shown in panel
(a). Subsequently a laterally growing front is expected, which is depicted in panel (b).
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Crystal symmetries, as stated by the Curie’s law, are a key ingredient to tailor physical properties at will. In magnetism,
such symmetries are particularly important to define the easy axis of magnetization and the values of the coercive and
saturation fields[1]. Controlling those parameters is crucial for the development of magnetic memories or spintronic devices
[2]. In this work, I explore the impact of very low symmetry interfaces on the magnetic properties of ferromagnetic ultrathin
films. More particularly, I investigate substrates with no mirror planes, that can be therefore called ‘chiral’ surfaces.

I will present results on Co films deposited on a Au(643) surface which is composed of a nanometric array of step edges
and atomic kinks with a point group symmetry 2 (no mirrors, 1 rotation axis). The ‘chirality’ of this surface has been
characterized by Low Energy Electron Diffraction, ellipsometry and Sum Frequency Generation.

A sandwich of Pt(1.5nm)/Co(0.7nm)/Pt(2nm) was deposited by sputtering, resulting in an out-of-plane magnetization
of the substrate. A reference sample was prepared in the same batch, on a silicon oxyde substrate. The most striking
result is that it is possible to reverse out-of-plane magnetization with a rather low in-plane magnetic field. Furthermore,
this switching field is found to be very anisotropic in the plane of the sample (cf figure1a). We have also observed the
magnetic domains which are very elongated, showing again a strong magnetic anisotropy (cf figure1b). Finally, we have
probed magnon modes by Brillouin Light Spectroscopy, and an azimuthal angular dependence of the asymmetry between
the Stokes and the anti-Stokes frequencies was observed, in contrary to what has been measured on the reference sample.
I will also show that it is possible to obtain those low symmetry magnetic interfaces on intrinsic silicon wafers, opening the
study of their spintronic properties.

The interpretation of those results is still under study. First complex magneto-optical effects can occur on such low-
symmetry samples due to a coupling between structural anisotropy and standard magneto-optical terms. Models taking
into account a possible tilted anisotropy will also be discussed in the light of experimental results. Finally, a non-collinearity
of the magnetic texture is a possible driving force for such unusual behaviors.

Figure 1: a) Plot of the in-plane switching field of out-of-plane magnetization normalized by value of the out-of-plane
switching field (polar MOKE configuration) versus the azimuthal angle between the field an the step edges direction (φ =
0◦ : Hin ∥ steps; φ = 90◦ : Hin ⊥ steps. The blue line is the Kondorsky law Hc(0)/cos(φ). In inset, a sketch of the experiment
configuration and three typical MOKE cycles. b) Magnetic Domains imaged in Kerr polar configuration
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Les ferrites (Mn,Zn)Fe2O4 et (Ni,Zn,Cu)Fe2O4 sont largement utilisés pour élaborer à l’échelle industrielle des com-
posants fonctionnant dans des gammes de fréquence de 1-10 MHz en électronique de puissance et de 0.1-10 GHz pour
les applications RF (absorbants, substrats d’antenne, composants. . . ). Ces matériaux élaborés avec une structure spinelle
présentent des propriétés magnétiques et électriques qui permettent de les utiliser à haute fréquence[1][2], avec une limita-
tion liée aux échauffements des composants. Leur mise en forme par pressage et frittage restreignait jusqu’ici les géométries
accessibles, mais l’émergence des procédés de fabrication additive ouvre des opportunités nouvelles pour concevoir des
composants architecturés afin de réduire les volumes, notamment grâce à une meilleure gestion thermique. Cependant,
l’utilisation de ces nouveaux procédés conduit à des microstructures différentes (porosités, taille de grains, compositions
des joints de grains,). Cette étude porte sur l’influence d’un procédé de FA sur les propriétés magnétiques dynamiques de
ferrites.

Figure 1: (a)Procédé d’impression par robocasting, et (b) tores imprimés à base de ferrite (Mn,Zn)Fe2O4.

Dans ce travail, nous avons décidé de fabriquer des pièces par un procédé innovant d’impression 3D par extrusion de pâte,
également appelée robocasting ou DIW (Direct Ink Writing). [3] Ce procédé, illustré dans la figure 1(a), consiste à extruder
une pâte organique chargée par une suspension céramique de (Ni,Zn,Cu)Fe2O4 ou (Mn,Zn)Fe2O4. Les pâtes préparées
présentent des comportements rhéofluidiants pour permettre l’extrusion sous cisaillement au travers de buses métalliques
puis la tenue de l’ébauche après le dépôt. L’utilisation de buses métalliques permet d’extruder des formulations très chargées
en poudres afin d’obtenir des pièces denses avec moins de retrait de géométrie lors du déliantage et du frittage.Les pièces
imprimées sont présentées dans la figure 1(b). Ces tores ont été imprimés avec une pâte chargée avec 84 % en masse de
poudre de ferrite MnZn. Les premières pièces imprimées étaient des tores destinés aux mesures des propriétés magnétiques.
Elles subissent une étape de déliantage et de frittage thermique pour éliminer les éléments organiques et densifier la pièce.

Afin de pouvoir valider le procédé utilisé pour fabriquer ces tores à base de (Mn,Zn)Fe2O4, des tores par compression
uniaxiale ont été préparés à partir du même feedstock utilisé pour l’impression robocasting. La figure 2(a) montre le
comportement dynamique d’un tore de référence élaboré par compression uniaxiale (CU) et un tore par robocasting (Robo)
mesuré par une technique d’impédance-métrie entre 0.01 MHz et 100 MHz. Au premier ordre, les niveaux de perméabilité
sont liés à la masse volumique des tores : le tore imprimé présente une densité relative de 91 % et une porosité ouverte
d’environ 3 %, alors que la pièce de référence (CU) présente une densité relative de 96 % avec une faible porosité ouverte.

De plus, les mécanismes de résonance et de relaxation des domaines magnétiques des tores imprimés semblent différents
de ceux des tores de référence : la courbe de perméabilité imaginaire µ” d’un tore imprimé est plus étalée en fréquence, avec
un décalage en fréquence de résonance vers les hautes fréquences. Cet écart pourrait être interprété par des différences de
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dispersion de taille de grains entre les deux matériaux. Une mesure de la taille moyenne des grains sur l’image présentée
dans la figure 2(b) montre des valeurs de 3,52 ± 1,50 µm. Cette taille moyenne peut refléter une dispersion des grains
monodomaines et bidomaines magnétiques, puisque d’après [4], des grains monodomaines ont été observés lorsque la taille
est inférieure à 4 µm dans un (Mn,Zn)Fe2O4. Des caractérisations quantitatives de dispersion de taille de grains (figure 2(b))
sont en cours pour confirmer cette hypothèse.

Figure 2: (a) Perméabilité réelle µ’ et imaginaire µ” pour un tore imprimé par robocasting et un tore obtenu par compression
uniaxiale, et (b) microstructure d’un tore ferrite (Mn,Zn)Fe2O4 imprimé et fritté à 1160°C sous atmosphère contrôlée.
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Due to its unique physical properties and ultimate thickness, monolayer graphene (Gr) has been widely used in nano-
electronics. The importance of this material for both fundamental spintronics and future applications was quickly realized
after the first unambiguous demonstration of spin transport in graphene at room temperature [1]. Thanks to its weak spin-
orbit coupling and large spin diffusion length, the Gr has been the subject of research in a number of applications, such as
magnetic junctions with or without a tunnel barrier. However, in addition to the wavy surface of the Gr, the deposition of a
metallic layer on it causes defects or even amorphisation of the Gr layer [2]. Controlling the quality of the Gr/ferromagnetic
material (FM) interface, which directly affects the magnetic properties of the basic units of spintronic devices, is a major
challenge, and few works in the literature have been reported on the effect of intercalating an insulating barrier between
the Gr and the FM on the dynamic magnetic properties of these Gr/FM-based heterostructures. Here we report on the ef-
fects of two different barriers, namely MgO and Al2O3 on the structural and magnetic properties of SiO2/Gr/Barrier/CoFeB
(CFB)/Ta structures (Figure 1.a), which are compared with those of control samples without Gr layer (Figure 1.b). In our
work, a monolayer of high-quality Gr was synthesized by inductive heating chemical vapor deposition (CVD), while MgO
and Al2O3 were deposited by molecular beam epitaxy (MBE) and atomic layer deposition (ALD), respectively. The CFB
and Ta films were deposited by means of the physical vapor deposition (PVD) technique. Raman characterizations showed
that Gr exhibits more defects with MgO barrier than when it is associated with Al2O3. This is confirmed by the increase of
the intensity of the defect peak (D) of the Gr/MgO/CFB Raman spectrum (Figure 1.c) in regard of the Gr/Al2O3/CFB one
(Figure 1.d), but without reaching the amorphization stage. Our results are consistent with those reported in the literature
[2] and with our Magneto-Optical Kerr effect (MOKE) results that showed that the Gr/MgO/CFB system exhibits higher
coercivity compared to Gr/Al2O3/CFB one (Figure 1.f) while the reference samples have a same coercivity (Figure 1.e).

Figure 1: (a) samples structure; (b) controls structure; (c) Raman spectra of Gr and Gr/MgO/CFB; (d) Raman spectra of
Gr and Gr/Al2O3/CFB; (e) MOKE cycles of controls; (f) MOKE cycles of samples.

Dynamic magnetic properties were also investigated. Micro-Stripe Ferromagnetic Resonance (MS-FMR) results showed
that the Gr/MgO/CFB heterostructure exhibits various resonance modes, which is not the case for the Al2O3 based one
(Figure 2.a). This result could also be an indication of the heterogeneity of the MgO-based system, in agreement with Raman
and MOKE characterizations. Brillouin light scattering (BLS) measurements showed that the presence of graphene in both
systems reduces the measured BLS frequencies (Figure 2.b). This could be attributed to an increase in the perpendicular
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magnetic anisotropy (PMA). This effect is more pronounced in the case of Gr/Al2O3/CFB. It is worth noting that PMA
enhancement has been reported in the literature at Gr/FM interfaces [3, 4]. This effect was attributed to direct hybridization
between the metal 3d and graphene π orbitals. In our work, we observe a similar effect while Gr and CFB are decoupled by
the insulating barrier. We are making progress toward understanding this behavior and highlighting the role of insulating
barriers in monitoring the magnetic response of such heterostructures.

Figure 2: MS-FMR measurements on Gr/MgO/CFB or Gr/Al2O3/CFB heterostructures; (b) BLS measurements on Gr-based
heterostructures and reference films (without Gr).
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2D materials offer the ability to expose their electronic structure to manipulations by a proximity effect. This could

be harnessed to craft properties of 2D interfaces and van der Waals heterostructures in devices and quantum materials.[1,
2] We explore the possibility to create an artificial spin polarized electrode from graphene through proximity interaction
with a ferromagnetic insulator to be used in a magnetic tunnel junction (MTJ). Ferromagnetic insulator/graphene artificial
electrodes were fabricated and integrated in MTJs based on spin analyzers.[3] Evidence of the emergence of spin polarization
in proximitized graphene layers was observed through the occurrence of tunnel magnetoresistance. We deduced a spin
dependent splitting of graphene’s Dirac band structure (≈15 meV) induced by the proximity effect, potentially leading to
full spin polarization and opening the way to gating.[4] The extracted spin signals illustrate the potential of 2D quantum
materials based on proximity effects to craft spintronics functionalities, from vertical MTJs memory cells to logic circuits.

Figure 1: (Left) Device concept of magnetic tunnel junction with magnetized graphene as spin polarizer. (Center) Exchange-
induced spin splitting of the graphene Dirac cones by proximity effect. (Right) Typical spin signal recorder on one of our
devices.
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Due to their atomic-scale dimensionality, 2D materials are ultrasensitive to adjacent charges, enabling even post-processing
electric control. However, the task of adding functionality to 2D layers continues to pose a significant challenge for on-
demand device-property exploitation. Here we report that electrical and even fully optical way to control and write mod-
ifications to magnetoresistive (MR) response of CVD-deposited graphene is achievable through the electrostatics of the
photoferroelectric substrate (see Fig.1). For electrical control the ferroelectric (FE) switch of polarization modifies magne-
toresistance by 67 percents due to graphene Fermi level shift with related modification in charge mobility. Similar function
is also attained entirely by light due to substrate photovoltaic (PV) effect. Moreover, the all-optical way to imprint and
recover graphene magnetoresistance by light will be reported as well as magnetic control of graphene transconductance.

Figure 1: The FE loop (a) induces graphene transconductance (b) with remanent states "1" and "2" manifesting different
magnetoresistance (c,d). The MR effect in state "2" can be also controlled by PV effect (e,f).

These findings extend recently reported new type of all-optical and re-writable memory concept [1] to a new magnetic
dimension and advance wireless operation for sensors and field-effect transistors.
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Magnetically ordered systems sustain collective dynamical states, quantized into magnons, in which magnetic moments
precess at adjustable frequencies. Magnons are prime candidates for encoding quantum information that can be processed,
propagated and converted in other types of signals [1]. Yttrium Iron Garnet (YIG) is the magnetic material known to feature
the lowest magnon losses when shaped in the form of bulk single-crystal spheres, and has been the most studied platform in
this context. The use of epitaxial thin films of magnetic garnets for on-chip integration has, by contrast, remained a major
difficulty.

Extrinsic magnetic losses are commonly observed in epitaxial thin film garnets at cryogenic temperatures, due to the
presence of a paramagnetic substrate at the interface with the magnetic film. Besides, variations in the composition of the
garnet have been explored, by doping or even by full substitution of Y with ions spanning nearly all the 4 f rare-earths from
Ce to Lu. Many of them tune the perpendicular magnetic anisotropy in epitaxially-strained films. Thin films of LuIG [2],
YIG [3] and Bi-doped YIG (BiYIG) [4, 5] represent the only compositions that enable a Gilbert damping parameter α in the
10−4 range or lower, required for the coherent manipulation of magnons. This calls for a rethinking of the epitaxial garnets
system combinations.

We cover in this contribution our recent progress in the growth, using magnetron sputtering, of ultrathin garnet films
with tunable magnetic anisotropy and low damping. The thickness of the epitaxial films ranges within 3-30 nm. We study
their degree of crystalline perfection, strain, elemental composition and magnetic properties including damping, using X-ray
diffraction, TEM imaging, ferromagnetic resonance and non-local magnon transport measurements.

The other aspect of our work concerns the integration of these magnetic systems within smaller microwave resonators.
We will show how to use lumped-element cavity resonators for this aim. At the micron scale, the next step lies in nano-
lithographed superconducting resonators, aiming to achieve strong couplings and to obtain systems displaying a high value
of the cooperativity [6, 7]. By redesign of the resonators, we can significantly improve their magnetic coupling to our
ferromagnetic ensembles of spins.

In a context where results on single-spin electron resonance have never been so promising [8], we can be confident
overall that an integrated platform operated at few K and coupling superconducting elements with garnet nanomagnets
would constitute a precious resource for different classes of magnonic experiments. We will briefly cover the perspectives
offered by such hybrid magnon-photon systems.

Acknowledgments

W.L. acknowledges the support of the ETH Zurich Postdoctoral Fellowship Programme (grant 21-1 FEL-48).

References

[1] Yutaka Tabuchi, Seiichiro Ishino, Atsushi Noguchi, et al. Coherent coupling between a ferromagnetic magnon and a
superconducting qubit. Science 349, 405–408 (2015).

[2] Colin L. Jermain, Hanjong Paik, Sriharsha V. Aradhya, et al. Low-damping sub-10-nm thin films of lutetium iron garnet
grown by molecular-beam epitaxy. Appl. Phys. Lett. 109, 192408 (2016).

[3] Jinjun Ding, Chuanpu Liu, Yuejie Zhang, et al. Nanometer-Thick Yttrium Iron Garnet Films with Perpendicular Anisotropy
and Low Damping. Phys. Rev. Appl. 14, 014017 (2020).

[4] Lucile Soumah, Nathan Beaulieu, Lilia Qassym, et al. Ultra-low damping insulating magnetic thin films get perpendic-
ular. Nat. Commun. 9, 3355 (2018).

142



[5] Diane Gouéré, Hugo Merbouche, Aya El Kanj, et al. Temperature-independent ferromagnetic resonance shift in Bi-
doped YIG garnets through magnetic anisotropy tuning. Phys. Rev. Mater. 6, 114402 (2022).

[6] Justin T. Hou and Luqiao Liu. Strong Coupling between Microwave Photons and Nanomagnet Magnons. Phys. Rev.
Lett. 123, 107702 (2019).

[7] Yi Li, Tomas Polakovic, Yong-Lei Wang, et al. Strong Coupling between Magnons and Microwave Photons in On-Chip
Ferromagnet-Superconductor Thin-Film Devices. Phys. Rev. Lett. 123, 107701 (2019).
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The transport of magnons is a popular alternative to electrons for low power spintronic applications due to the absence
of Joule heating and the long relaxation length of magnon carriers. Transport effects in magnetic insulators usually appear
under the application of a temperature gradient which makes the processes inherently temperature-dependent and, thereby,
highly sensitive to magnon interactions. In fact, the widely used Linear Spin Wave Theory (LSWT) employed to describe
magnonic transport neglects such interactions and consequently results in an improper account of thermal effects. This
theory is formally valid only as long as the fluctuations of Sz are neglected, i.e., close to T=0. In other words, at non-
zero temperature, the independent magnon picture fails and interactions must be taken into account. The importance of
magnon interactions has been pointed out rather early in antiferromagnets e.g., [1] as well as in nontrivial ferromagnets
[2], suggesting that such interactions are in fact ubiquitous. Recent theories suggest that magnon interactions can trigger
topological phase transitions [3, 4].

To assess the impact of magnon interactions on topological transport, we focus on a collinear honeycomb antiferromagnet
with out-of-plane Dzyaloshinskii-Moriya interaction (DMI), a system that is known to display magnonic spin Nernst effect
in the absence of interactions [5, 6]. The system is described by the following spin Hamiltonian

H = Jl

∑
〈i j〉

Si · S j + K
∑

i

(Sz
i )

2 + Dz

∑
〈〈i j〉〉

ẑ · (Si × S j) + D||
∑
〈i j〉
ηi j · (SA,i × SB, j) (1)

where J are the Heisenberg interactions, K is the easy-axis anisotropy, Dz is the out-of-plane DMI and D|| is the intefacial
DMI. We consider two cases of interactions: the four magnon interactions (order O(S0)) due to higher order of the Holstein-
Primakoff transformation that should appear naturally in higher temperatures and the three magnon interactions (order
O(S1/2)) that appear in the case of the interfacial DMI introduced in Eq. (1). We will consider an interacting Hamiltonian

Hint = H(2)k +H(4)k (T ) +Σ
(3)
k (ε, T ), (2)

where H(2)k is the LSWT Hamiltonian, the four-magnon Hamiltonian H(4)k (T ) will be treated by a Mean Field Theory

(MFT) and Σ(3)k (ε, T ) is the self-energy correction caused by the three-magnon interaction of the D||. In Fig. 1, we plot
the energy renormalization of the magnon spectrum due to the four-magnon term treated in MFT. This correction to the
Hamiltonian is temperature dependent and it influences both the band structure and the Berry curvature.

Figure 1: The energy spectrum along the high symmetry path of the Brillouin Zone for both the non-interacting model
(straight line) and interacting model at higher temperatures (dash-dot line, point line).

In Fig. 2, we plot the Spin Nernst conductivity for the non-interacting case and the conductivity corrected by the MFT
temperature-dependent theory. In the non-interacting case, two different values of the out-of-plane DMI, Dz and Dz/4, is
plotted. We can see that the interacting conductivity matches the original value at low temperatures but it approaches the
smaller value at higher temperatures.

In conclusion, we can see that the interactions affect the topological transport of magnons in multiple non-trivial ways
and should be considered to properly describe the anomalous magnonic transport.
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Figure 2: The magnon Spin Nernst conductivity is plotted along the temperature for the non-interacting model for two
different values of out-of-plane DMI (green and red line) and the interacting model (blue line). The interacting conductivity
matches the non-interacting one for low temperatures but as the temperature increases it approaches the negative values
for a lower DMI.

Acknowledgments

K.S. and A.M acknowledge support from the Excellence Initiative of Aix-Marseille Universite - A*Midex, a French ”Investisse-
ments d’Avenir” program.

References

[1] A.B Harris et al. Dynamics of an antiferromagnet at low temperatures: spin-wave damping and hydrodynamics. Phys.
Rev. B 3, 961 (1971).

[2] A.L. Chernyshev and P.A. Maksimov. Damped Topological Magnons in the Kagome-Lattice Ferromagnets. Phys. Rev.
Lett. 117, 187203 (2016).

[3] A. Mook et al. Interaction-Stabilized Topological Magnon Insulator in Ferromagnets. Phys. Rev. X 11, 021061 (2021).

[4] Y.-S. Lu et al. Topological Phase Transitions of Dirac Magnons in Honeycomb Ferromagnets. Phys. Rev. Lett. 127,
217202 (2021).

[5] R. Cheng et al. Spin Nernst effect of magnons in collinear antiferromagnets. Phys. Rev. Lett. 117, 217202 (2016).

[6] V.A. Zyuzin and A.A. Kovalev. Magnon Spin Nernst Effect in Antiferromagnets. Phys. Rev. Lett. 117, 217203 (2016).

146



Session 4, November 15th, 08h50 – 09h10

Reconfigurable Co2MnSi Heusler-based magnonic
crystals

S. Mantion *1, *, M. Madami2, S. Tacchi3, and N. Biziere1

1CEMES, Université de Toulouse, CNRS, UPS, Toulouse, France
2Dipartimento di Fisica e Geologia, Università di Perugia, Perugia, Italy

3Istituto Officina dei Materiali del CNR (CNR-IOM), Università di Perugia, Perugia, Italy
*nicolas.biziere@cemes.fr

Magnonic crystals are magnetic materials whose magnetic properties are periodically and artificially modified, which
generates specific frequency band gaps in the spin waves dispersion. These micro/nanostructured systems can be used for
passive microwave devices, such as filters, waveguides, sensors, and for logic components, such as transistors [1]. Currently,
the majority of the magnonic devices present in the literature have to operate with saturated magnetization states stabilized
with the application of a saturation field. This requires the use of permanent magnets, which limits their on-chip integration.
Studies are then conducted to develop magnonic devices that can be reconfigurable at zero bias field, i.e. at remanence. In
the magnonic context, a reconfigurable device is a system that can offer different microwave responses that can be modified
on purpose. In this context, Heusler based Co2MnSi (CMS) thin films are promising candidates for magnonic applications
owing to their relatively high saturation magnetization (≈ 1.2 T [2]), low damping coefficient (2.10−3 down to 7.10−4 [2,
3]) and strong magneto-crystalline anisotropy (≈ 30 mT [2]).

In particular, we first demonstrated with micromagnetic simulations that its strong cubic anisotropy allows the stabiliza-
tion of different quasi-uniform remanent states depending on the direction of an applied initialization field in a magnonic
crystal model system: a square magnetic antidot lattice with antidot sizes in the range 300 − 50 nm and for an aspect
ratio lower than 1/3 [4]. When a microwave signal is applied, these different remanent states offer different microwave
responses, in particular one where the spin wave modes are well excited ("ON" state) and one where the latter are strongly
attenuated ("OFF" state). We also showed that the transition between the different remanent states can be achieved with
low amplitudes of field pulses of a few mT and switching times in the order of 1 ns. CMS magnonic crystals with antidot
size 200 nm and spacing 600 − 800 nm were then fabricated with a combination of e-beam lithography (EBL) and ion
beam etching (IBE) (see Fig. 1 a)). Ferromagnetic resonance (FMR) experiments were performed to firstly study the ex-
cited quantized and confined spin wave modes in these magnonic crystals. Their microwave response was measured via a
deposited micro-antenna. Well-resolved standing spin wave modes were observed, resulting in the measurement of a re-
configurable property at remanence numerically predicted (see Fig. 1 c) and d)). Micromagnetic simulations in the case of
ideal geometries and magnetic properties quantitatively fit the experimental results. Micro-Brillouin Light Scattering (BLS)
measurements performed on another sample but processed by the same technique further confirm the good agreement
between the simulations and the FMR experiments (see Fig. 1 b)).
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Figure 1: a) SEM image of the CMS magnonic crystal (2D antidot lattice) with square antidot size of 200 nm and spacing
600 nm (as insets, zoomed SEM images of a CMS antidot at a 52◦ tilted view (left) and top view (right)). b) Micro-BLS
intensity (black curve) and FFT (red curve) spectra at µ0H0 = 100 mT measured on a CMS magnonic crystal. Insets of the
2D spatial mapping of the amplitude of two main propagating spin wave modes, extended (indexed with yellow circle) and
localized (cyan triangle). c), d) (Right) Calculated remanent magnetic states when an initialization field is applied along
y (Rem Y) or along x (Rem X), (Left) plots of the FFT spectra (upper graph) and the measured ∆S11 parameters (lower
graph) in the Rem Y (black line) and Rem X (red line) states for a CMS magnonic crystal with antidot size 200 nm and c)
spacing 600 nm, d) spacing 800 nm.
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Magnonics, the study of spin-Waves (SW) and their quanta magnons, has emerged as an attractive field of research and
has been studied extensively in ferromagnetic materials (FM) in the last few decades. One attractive property of these spin-
waves is their existence on nanometer wavelengths at GHz frequencies, making them promising candidates for information
processing applications. Additionally, thanks to the presence of uncompensated dipolar fields in FM, many important prop-
erties were revealed, including non-reciprocity, magneto-static spin waves [1], and Bose-Einstein condensation [2]. These
properties play a crucial role in developing integrated magnonic devices for beyond CMOS technologies.

Whereas the other family displaying magnetic order, namely the antiferromagnetic materials (AFM), has for many years
been scarcely studied [3]. It is only recently that there is a renewal of interest in canted antiferromagnetic materials, with the
presence of bulk Dzyaloshinskii-Moriya interaction or standard collinear antiferromagnets under applied magnetic fields as
they exhibit a dipole-exchange regime of their antiferromagnetic spin-waves making them accessible to inductive excitation
and detection schemes which of most relevance for applications. The associated dipolar interaction holds the promise of
a rich landscape of properties and tunability equivalent to that of FM spin-waves such as anisotropy, non-reciprocity and
Bose-Einstein Condensation.

Here we highlight the existence of ultra-fast magneto-static SWs in the canted antiferromagnetic phase of (α-Fe2O3) [4],
known as Hematite, using propagating spin wave spectroscopy between two inductive k-selective antennas (Figure 1 (a)).
We study the propagation in two configurations, one where the propagation vector k is perpendicular to the Néel vector
n (bulk magnons) and the other where the propagation vector k is parallel to the Néel vector n (surface magnons). As a
result, we find a lifted non-degeneracy between the two magnon dispersion modes of up to 1 GHz [5] (see Figure 1 (b-c)).
To go further, we use time of flight spin-wave spectroscopy [6] to determine the spin-wave velocity, ranging from 10 to 20
km/s, and demonstrate the presence of both non-reciprocal and reciprocal antiferromagnetic surface magnon modes.

Lastly, we achieve an efficient electrical detection of propagating non-reciprocal antiferromagnetic spin-wave using non-
local inverse spin-Hall effects measurements via spintronic (platinum) transducers [7]. We believe that our experimental
results demonstrate all the potentials of such antiferromagnets for establishing a new research field in magnonics based on
canted antiferromagnets, which can also possess altermagnets behavior, and hold a lot of opportunities for high-frequency
magnonics.

Figure 1: (a) Schematic of the set-up, (b-c) Spin wave transmission measurement showing the transmitted amplitude |L12|
at k ≈ 0.6 rad/µm for k ⊥ n (//m) for panel (b) and k //n (⊥ m) for panel (c).
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Magnonics is a promising scientific field in which spin waves, or their quanta, magnons, are used for their potential
applications for the development of non-reciprocal components [1, 2]. The ability to stir and shaped spin wave beams at
the submicron scale [3–5] opens up significant opportunities for advancing the miniaturization of interferometric devices.
Recent advances have demonstrated the successful unidirectional transmission of exchange spin waves by taking advantage
of the chiral coupling between resonant ferromagnetic nanowires and the high wave-vector spin wave modes in a thin YIG
film. [6, 7].
In this work, we propose a new approach to study the unidirectional excitation of exchange spin waves. Taking advantage
of the chiral coupling of the magnetization precession with the microwave field of a nanowire, we designed two nanowire
arrays distant each other by D=20 µm, directly fabricated onto a 55 nm-thin YIG film (see Fig.1(a)). We show in Fig.1(b),(c)
mapping (Hext, f ) of the transmission spectra∆L12 and∆L21 respectively measured from -192 to 192 mT. We observe up to
6 well-resolved branches, which display complete non-reciprocity at higher frequency, that is reversed when switching the
polarity of the applied static field. Fig.1(d)-(g) shows a zoom of the spectra at 65 mT for the four peaks corresponding to
the uniform thickness mode m= 0. We notice a partial chirality for the two first peak km=0

0 and km=0
1 (see Fig.1(d) and (e))

, while the spectra for higher wave vectors km=0
2 and km=0

3 (see Fig.1(f) and (g)) show perfect unidirectional transmission.
With such a geometry of excitation, where all the nanowires microwave fields are in phase, we obtain very well-resolved
peaks, whose wavevectors are multiples of the inverse of the grating periodicity (a), namely kn = n 2π

a . Although the
amplitude of the higher frequency peak decays rapidly, we are able to sense with this particular device (e.g. 100 nm-wide
bars spaced by a=400 nm) exchange spin-waves up to 50 rad.µm−1. It is make possible to excite the highest wave vectors
with this geometry, simply by reducing the periodicity between the Au nanowires. Taking advantage of the sharp spectral
definition of this technique, we present a complete study of the spin wave propagation properties, including in particular
the wavevector dependence of the relaxation time. Therefore, this robust technique constitutes a method of choice for
spin wave spectroscopy characterization of high wave vector in any orientation of external field. Furthermore, we show
how the multimodes bandwidth can be engineered by adjusting the dimensions and spacing of the nanowire grating, with
achiveable range up to 100 rad.µm−1. Our findings have important implications for the development of non-reciprocal
magnonic devices.
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Lord Raleigh’s principle, established in 1873, states that the signal received by a receiver remains unchanged when the
positions of the vibration source and receiver are interchanged, highlighting the concept of reciprocity in wave propaga-
tion. This principle poses a fundamental limitation, as under reciprocity, it is impossible to tune transmission to different
levels in opposite directions, thereby impeding the creation of acoustic and elastic wave devices that exploit unidirectional
transmission, such as acoustic diodes.[1] However, it is well-known that breaking time symmetry in ferromagnetic materials
can lead to non-reciprocal sound propagation. In 1958, Kittel provided a field-theoretical treatment of the magnetoelastic
coupling of magnons and phonons in ferromagnetic crystals, emphasizing the substantial effects when the wavelengths
and frequencies of the two fields coincide, suggesting the possibility of creating non-reciprocal acoustic elements, including
acoustic gyrators. [2] In this context, acoustics takes benefit of the ’natural’ non reciprocity of Spin Waves (SWs). Building
upon this theoretical foundation, our study focuses on Surface Acoustic Waves (SAWs) propagation in epitaxial iron thin
films on GaAs in the GHz regime completed by Brillouin Light Scattering experiments to probe SWs dispersion and SWs
non reciprocity. To interpret the experimental data, we employ a phenomenological approach that considers LLG equations
and magnetoelastic interaction to describe the observed relative changes in SAW velocity and attenuation as a function
of the direction and the intensity of the applied magnetic field. [3], [4] Remarkably, our findings demonstrate that the
observed velocity variation and the non-reciprocity of SAWs can be effectively described by incorporating into the usual
elastic magnetoelastic calculations the spin-wave dispersion and the so-called rotation tensor ω (XZ component defined in
eq.1, represented in Fig. 1) [5], an additional dynamical component that survives in the thin-film limit.
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Figure 1: Rayleigh-type Surface Acoustic Wave described as its surface displacement and rotation. The lattice rotates in
opposite direction when the SAW direction is reversed. Hence, the SAW-SWs coupling depends on the SAW propagation
direction leading to non reciprocity.

By accounting for the influence of spin waves, our analysis provides a comprehensive understanding of the experimental
phenomena observed in SAW propagation (attenuation and velocity change in the wave, see Fig.2). These results highlight
the significance of considering spin-wave effects in achieving non-reciprocal sound propagation and emphasize the potential
for developing advanced acoustic devices. Our study represents a significant contribution to the field of non-reciprocal
acoustics, showcasing successful SAW propagation in epitaxial iron on GaAs and providing a solid interpretation framework
through the incorporation of spin-wave dispersion.

Furthermore, the observed non-reciprocity in surface acoustic wave propagation holds crucial implications for magnonic
devices, where surface acoustic waves not only act as triggers for magnetization dynamics but also promote preferential
spin waves propagation in a specific direction. This interplay between non-reciprocal acoustic behavior and magnetization
dynamics highlights the potential for developing novel magnonic devices controlled by remote SAW transducers.
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Figure 2: Non reciprocity in the velocity variation at resonance between positive (blue) and negative (red) SAW wave vector
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Spin waves (SWs) are elementary magnetic excitation exhibiting nonreciprocity (NR) and nonlinear behaviour. NR is
the situation where the frequency ω(k⃗) of a SW changes upon reversing the direction of phase propagation[1]. During the
last decades, NR SWs have grown in interest for many applications such as magnonic diodes, directional spin wave emitters,
and passive non-reciprocal filters.

In this work we study the NR behaviour of SWs in (CoFeB / Ru / CoFeB) [see Fig. 1(a) and Fig. 2(a)] synthetic antifer-
romagnet (SAF) i. e. two ferromagnetic layers separated by a spacer layer that mediates an effective interlayer coupling
energy J < 0 favoring an antiparallel state. SWs in SAF have two precession modes[2], acoustical (in-phase) and optical
(out-of-phase).

In layer-to-layer dipolar dominated SAF system a large NR of SWs can lead to unidirectional flow of energy for acoustical
mode. To evidence it, we use two experimental techniques where an in-plane static field is applied; 1) Brillouin Light
Scattering (BLS) [see Fig. 1(b)] to measure the dispersion relation [see Fig. 1(c)] of SWs in Si / SiOx/ SAF. We observed
non-reciprocity for the two modes. The interesting case is the large NR of acoustical mode which leads to the ”unidirectional”
flow of energy of acoustical SWs.
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Figure 1: a) Stack of the synthetic antiferromagnet used for the BLS experiments. b) BLS geometry: the applied field H⃗0 is
parallel to the ˆ⃗x axis, plane of incidence (xz), wavelength of laser beam λ= 532 nm. c) Dispersion relations are measured
by BLS for H⃗0 ∥ k⃗x . The uniform resonances (k=0) were measured by VNA-FMR. The error bars are the linewidths (full
width at half maximum). The black arrow recalls that the group velocity of the acoustical SWs always points toward the
positive side, irrespective of the sign of the wavevector.

2) Propagating spin wave spectroscopy [see Fig. 2(c,d,e,f)] to electrically demonstrate that acoustical SWs travel in a one way
manner ”unidirectional” which was not demonstrated before. A similar electrical experiment was performed in Ishibashi et
al[3] to electrically switch the non-reciprocity sign of optical SWs in SAF but not being able to demonstrate the unidirectional
propagation of acoustical SWs.
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Figure 2: a) Stack of synthetic antiferromagnetic film patterned into devices for propagating spin wave spectroscopy
experiments. b) Geometry of the device. Gray: single-wire antennas with r = 6 µm and w = 1.8 µm. Antenna 1 (A1)
and Antenna 2 (A2) are connected to a VNA to collect transmission [S12, S21] parameters. c) and d) Forward and backward
transmission parameter measured for wave propagating from A1-to-A2, A2-to-A1 respectively and at one of two possible
degenerate scissors state. e) and f) Forward and backward transmission parameter measured for propagating SWs after
toggling the scissors state.

To make a complete investigation, we compare experimental measurements with micromagnetic simulations[4] and
analytical framework based on Dynamic Matrix Theory[1, 5]. Different situations are taken into account; H⃗0 ∥ k⃗x , H⃗0 ⊥ k⃗x
and angle-resolved dispersion relations. Two first situations are compared with Ishibashi’s analytical model[3] whereas
angle-resolved dispersion relations are first introduced by us.

Our formalism predicts the unidirectional acoustical SWs and provides a simple to use equation to calculate the NR of
SWs:

δ fop, −δ fac = γ0Msk tmag
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H j

�2
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Overall, we perform a comparison between different experimental techniques, micromagnetic simulations, and existing
analytical frameworks where we find a good qualitative and quantitave agreement allowing us to better understand the
system.
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Spin waves (SW) are the eigen-excitations of magnetic order parameters. The transport of information by spin is one
of the important domains in condensed matter physics and of fundamental importance for the further development of
spintronic devices due to their specific properties such as: GHz frequency, nanoscale wavelength, anisotropic propagation,
non-linearity [1, 2], and non-reciprocal character. Synthetic antiferromagnet (SAF) which consists of two magnetic layers
separated by a thin nonmagnetic spacing is adequate to study the nonlinearity of spin waves. Here we report on an all-
inductive study of nonlinear processes in microstripes of SAF. Such films exhibit two types of SW modes, known as acoustical
and optical modes. The frequencies of these modes vary with the applied magnetic field. For specific configurations of the
applied static magnetic field HDC , the frequency of the acoustical magnon mode (fac) becomes half that of the optical magnon
mode (fop), a favorable condition to investigate nonlinear phenomena in SAF [1].

We used the experimental configuration shown in Fig.1.a to measure the nonlinear SW processes in a SAF induc-
tively. An RF stimulus is sent through an inductive antenna using a synthesizer to excite spin waves in an optimized
Co40Fe40B20/Ru/CoFeB stripe [3] acting as spin wave conduit. The response is then recorded on a spectrum analyzer using
a second antenna. To investigate nonlinear effects, three parameters are varied: i) the static field HDC chosen for each sam-
ple to ensure fop=2 fac , ii) the microwave power arriving at the sample (-15<Pin<11 dBm), and iii) the pump frequency
to excite the optical mode (10<fpump<15 GHz). To evidence the nonlinear behaviors, an excess power spectral density is
determined by subtracting values recorded on the same sample but for a slightly different value of HDC . A typical spectra is
shown in Fig.1.b. The doublets near fpump/2 evidence a three-magnon process where one optical magnon at fpump splits into
two acoustical magnons at fpump/2-δ and fpump/2+δ. 2). The second harmonics of the doublet around the fpump indicates
that we are deep in the nonlinear regime and the strong halo around fpump corresponds to a four-magnon scattering process,
in which two optical magnons excited at fpump annihilate and create two new optical magnons [1, 4].

Figure 1: a) Scheme of the experimental configuration. In practice, 4 well separated Co40Fe40B20 microstripes are positioned
under the antennas to improve the signal-to-noise ratio. b) Spectra of excess power spectral density versus pump frequency
at excitation power arriving at the sample 11 dBm and HDC=20 mT, for a SAF with 2x17 nm of CoFeB.

For the three-magnon scattering process, we observe that the frequency of the split magnons is directly related to the
input frequency and the power level applied. To further investigate the threshold behavior, we performed a detailed study
on the power dependence of the magnon amplitude at various input frequencies. Figure 2.b demonstrates the threshold
character of the splitting process.

Furthermore, we are developing a methodology to investigate a time-resolved measurement of nonlinear SW where we
use a pulsed RF excitation instead of a continuous wave. The mechanisms of splitting are closely related to the timescales
of magnetization dynamics. Magnon lifetimes are on the order of a few nanoseconds, so it is important to ensure that the
duration of the pulsed excitation is sufficient to induce nonlinear interactions. To achieve this, we varied the duration of RF
pulses from 500 ns to 5 ns. By systematically varying the pulse duration and analyzing the measurements, we can determine
the time of the magnons creation and gain insight into their dynamics.
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Figure 2: a) The power dependence of the non-linear effects at fpump=10.8 GHz. b) The power threshold of the three-
magnon splitting process around the frequencies fpump/2-δ=5.4 GHz and fpump/2+δ=5.6 GHz as a function of the mi-
crowave power arriving at the sample.
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The spin Seebeck effect is one of the most fundamental phenomena in the field of spin caloritronics [1], as it allows
the generation of a magnon spin current from a temperature gradient in ferromagnetic insulators in the absence of charge
carriers. A wide variety of phenomena can be probed using this effect, and it is to this day the subject of continuous
investigations.

One important feature of magnon transport is that their spin angular momentum is not their only degree of freedom.
The propagating spin wave nature of these quasi-particles gives them a chiral character which provides an additional knob to
control their propagation. This has been exploited since the beginning of the field of magnonics as it, for instance, controls
the propagation direction of dipolar spin waves in the Damon-Eschbach configuration.

More recently, the importance of the rotating dipolar stray fields generated by these chiral particles for the control of
their motion has been recognized. These dipolar stray fields possess a handedness, or chirality, that depends on the magnon
propagation direction. This allows to selectively couple propagating magnons to a neighboring magnon reservoir in a way
which is controllable by the reservoir magnetization direction.

This selective coupling has recently been used to induce the non-reciprocal transport of coherent [2] and diffusive
[3] dipolar-exchange spin waves controlled by the magnetization direction of a ferromagnetic gate placed on top of YIG.
However, the demonstration of such a control has been lacking for thermally-generated magnons. In addition, it has been
predicted that this magnon dipolar stray field chirality can be used to generate a directional magnon flow [4]. While such
a directional generation of a spin current has been demonstrated for coherent magnons [5], it has never been observed so
far in the incoherent case.

Here, we demonstrate the control of a thermally-generated flow of magnon in the non-local spin Seebeck geometry by
a ferromagnetic gate in YIG. We show that the symmetries of this effect are consistent with a coupling of the magnons to
the ferromagnetic gate controlled by the chirality of the magnon-dipolar stray field. Finally, we show that a directional
generation of thermal magnon can be achieved in the non-local spin Seebeck geometry using a ferromagnetic wire. This
directionality is tunable by the wire magnetization direction, and it displays symmetries consistent with a dipolar stray field
chirality-controlled generation of thermal magnons.
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Spin-waves represent a promising alternative to charge carriers for new information technology due to their low
energy, small wavelength, large degree of freedom (frequency and phase), and their easily attainable non-linear dynamics.
These characteristics make them particularly suited for neuromorphic computing schemes that take advantage of the massive
parallelization of operations in the frequency space and of the non-linear properties of spin-waves. Such schemes require the
excitation of many modes in small magnetic structures. This task can be fulfilled by parametric processes, where a photon
or a magnon at frequency 2 f splits in two magnons at frequencies f −δ f and f +δ f [1]. The splitting can be degenerate
(δ f = 0) or non-degenerate (δ f ̸= 0). Recently, the non-degeneracy was shown to open the possibility to cross-stimulate a
mode using multiple parametric excitations, effectively implementing an interconnected recurrent neural network capable
of classifying rf signals [2]. While exciting degenerate magnon pairs is simple, the observation of non-degenerate pairs has
been limited to µm-thick YIG films [3] and metallic microstructures with a vortex ground state [2].
In this study, we demonstrate that by varying the direction of the parametric excitation field one can efficiently excite
degenerate or non-degenerate magnon-pairs in a 500nm diameter YIG disk. When the rf field is applied parallel to the
static magnetization, a photon splits into a degenerate magnon-pair at half the pump frequency as expected (Fig. 1a).
However, when the rf field is applied transversely, it non-resonantly excites a magnon which splits into a magnon-pair that
is typically non-degenerate (Fig. 1b). This non-resonant transverse parametric pumping in YIG is flexible in terms of external
field and sample shape. These findings greatly facilitate the implementation of promising k-space computing schemes in
the most attractive magnonic material that is YIG.

Figure 1: µ-BLS spectra as a function of the pump frequency for a pumping field parallel (a) and transverse (b) to the static
magnetic field. In the parallel case, there is no excitation at f = fpump and a degenerate magnon-pair can be excited at
fpump/2 when it coincides with a mode frequency. In the transverse case, non-resonant excitation is observed at f = fpump
and non-degenerate magnon-pairs are excited at fpump/2±δ f
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Leveraging on nonlinear magnetization dynamics is promising for neuromorphic computing [1]. Recently, pattern recog-
nition has been demonstrated using a magnon-scattering reservoir [2]. To proceed further from this stage, one should be
able to train the neural network. In magnetic microstructures, spin-wave eigenmodes – neurons – are defined in the k-space.
Mutual nonlinear couplings between these modes – synaptic weights – are predominantly determined by their amplitudes.
We have previously demonstrated that parametric pumping allows the selective excitation of a large number of eigenmodes
in YIG microdisks [3].

Figure 1: Two-tone parametric spectroscopy in a 1 µm diameter YIG disk.

Here, we simultaneously excite pairs of modes by this mean to study their mutual nonlinear interactions. Two-tone
MRFM spectroscopy demonstrates that each mode is coupled to all other modes, with enhanced or suppressed peaks, and
the appearance of additional peaks in the spectrum (Fig. 1). Full micromagnetic simulations and a description of the
nonlinear magnetization dynamics in terms of normal modes [4] provide some insights into these nonlinear processes.
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Magnetic garnet thin films, with thicknesses of 10 to 100 nm, damping parameters in the 10-4 range, and tunable
anisotropy can now be routinely grown by liquid phase epitaxy (LPE) [1] and pulsed laser deposition (PLD) [2]. For
magnonic applications, these films often have to be patterned at the (sub)micron-scale and coupled to microwave antennas.
As such, it is important to monitor the damping after these stages [3]. In this work, we use MRFM to study the evolution of
the damping as a function of the diameter of microdisks patterned from 30 nm thick PLD BiYIG and 52 nm thick LPE YIG
films. Narrow microwave antennas made of Ti/Au are integrated either on top of or beside the disks. When the antenna is
directly patterned on top of the disks (keeping the e-beam resist mask), we observe an increased damping as the diameter
decreases, due to spin pumping at the disk periphery between the YIG and Ti/Au. Inserting an insulating layer between
the YIG microdisks and the metallic antenna leads to the opposite behavior: a reduced damping as the diameter goes down
(Fig. 1b). We ascribe it to radiation damping [4], which scales up with the volume of the magnetic sample. We also verify
that the microdisks beside the antenna have smaller inductive coupling, and therefore a smaller damping.

Figure 1: Optical image of the 52 nm thick YIG microdisks and integrated antennas. (b) Dependence of the damping
parameter on diameter in different configurations. Dotted lines are guides to the eye.
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Magnonics is a field that has been attracting increasing interest from the research community in recent years. Spin
waves potentially offer high-frequency applications and have a possibility to couple with other physical degrees of freedom.
The dispersion relation is a primordial prerequisite information for most applications. Laser spectroscopy such as Brillouin
Light scattering (BLS) is one of the most popular methods to determine spin wave’s band structure. Inductive methods have
become more and more popular to characterize magnons. Using a Vector Network Analyzer (VNA) and the fabrication of
nano-antenna, a high-resolution propagation spin wave spectroscopy (PSWS) is achievable [1]. The use of an antenna at
micrometer size allows to excite a wide range of wavevectors. Using a formalism developed in a previous work [2] and the
PSWS method, we attempt to determine spin wave’s dispersion relation of a synthetic antiferromagnetic stack (SAF) in the
scissors state, for which we anticipate a monotonous character [3].

Our SAF is a composite material made of two layers of CoFeB (17 nm-CoFeB) separated by a spacer layer of non-magnetic
material (0.7 nm-Ru). In the remanent state the two layers have anti-parallel magnetizations. SAF has generally two kinds
of spin wave modes: the acoustical mode and the optical mode that differ due to the in-phase and out-of-phase precession of
the magnetizations of the two layer. We focus on the acoustical mode characterized by a line-shaped dispersion relation[3].
Antennas are made of gold and present different geometries [4]. Two devices are used in our experiments:
(i) a microscopic stripe-shaped antenna with many circular SAF 4 µm dots [Fig. 1.a] underneath. The antenna generated
an almost uniform RF field, and hence it can be used to determine the acoustical spin waves frequency at kx = 0. This is
similar to a VNA-FMR experiment.
(ii) a unique disk of SAF with a diameter of 13 µm diameter with 1 µm nominal width simple antennas [4] is used to excite
spin waves at different wavevectors [see Fig. 1.a].

We excite spin waves using inductive antennas under an external field. The VNA expresses the measured propagation
through scattering matrix elements (S11, S21...). The VNA signal contains several contributions: a small one due to the
propagation of spin waves and parasitic contributions related to the electromagnetic cross-talk between antennas [5]. Most
of this parasitic signal is removed by an adequate reference measurement but there remains a small baseline [Fig. 1.d] that
needs to be corrected. This can be done in two ways: (i) either by differentiating S21 over the field and/or (ii) by using
a time gating approach [Fig. 1.c] to remove the signals transmitted in travel times incompatible with spinwave velocities
(note that spinwaves are much slower than the electromagnetic waves responsible for the cross-talk).

Figure 1: Scattering parameter S21 for an applied field equals to 59 mT before and after data processes. Devices(a). VNA raw
data(b) and data after process[iii](c) and process[ii](d). Modulus of time gated data(e)

As presented in [Fig. 1.c], the spin wave signal has a shape of a damped sine. By respecting some conditions, such as
having an antenna width smaller than the spin wave attenuation length, we can describe S21 through our formalism [see
Eq. 1]. In our case we simplify the formula by taking Latt larger than the propagation distance r.

S21 ≈ ie−ikx |r| e−
|r|

Latt [hx(kx)]
2 (1)
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The envelope [hx(kx)]2 corresponds to the efficiency of the antenna versus wavevector, which for our geometry is propor-
tional to a the square of a cardinal sine [4]. The frequency at kx = 0 should correspond to the maximum of the modulus
[Fig. 1.e]. To verify this assumption, we did a VNA-FMR experiment on the stripe to measure independently the kx = 0
frequency for each applied field. After applying a correction due to the difference of demagnetizing fields between the two
systems, we compare the VNA-FMR data with the maximum of the envelope of PSWS data that go through different types
of processes [Fig. 2 a]. This agreement between the two methods providing the resonant frequency at kx = 0 validates the
procedure. The dispersion relation was estimated by noticing that kx is related to the argument of the S21 parameter [see
Eq. 2]. The 2nπ uncertainty can be solved by knowing the position of the kx = 0 frequency and by unwrapping the phase.

S21

||S21||
= e−ikx r −→ kx(ω) = −

1
r

�
arg(S21) + 2nπ
�

(2)

Finally by applying the formula, we are able to uncover the dispersion relation from data that go through different types
of data processing methods. The different data processing methods give us dispersion relations that differs beyond a certain
range of wavevectors. We compare the different data and we keep the values that are in agreement [Fig. 2 b]. By doing
so we isolate the most probable values that describe magnon dispersion relation. In this work, we demonstrate that PSWS
experiment using micrometer size antenna are a promising method to probe monotonous relation dispersion of magnons.
To verify our formalism we have to compare dispersion relations obtain through the presented process with theoretical
equation and simulation.

Figure 2: Results from experiments to get magnon’s dispersion relation. Comparison of the frequency at kx = 0 from different
data processing (a). Spin wave’s dispersion relation on time gated data for different applied fields(b)
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Spin Waves (SW) are collective oscillations of a spin system in a magnetic material and present non-linear properties [1].
We study SW dynamics in Synthetic antiferromagnet (SAF) which allow to better control the SW propagation [2]. It consists
of two ferromagnetic layers coupled by a metal layer that induces an anti-parallel configuration of the magnetizations at
equilibrium [3]. Due to the coupling between these layers, two uniform resonance modes appear: the acoustic mode,
where magnetization precess in phase, and the optical mode, where magnetization are in phase opposition [4]. Adding
more layers leads to more resonance modes [5] and here we present experimental measurements of these modes. Our
sample is drawn Fig. 1(a). It has been grown by sputtering deposition in UHV and it is composed of 4 layers of 8.5 nm
CoFeB and 3 layers of 0.7 nm Ru on a Si/SiO2 substrate. We carried out dynamic measurements of the Ferromagnetic
Resonance using a Vector Network Analyzer (VNA-FMR). In this experiment, we excite the SW of the sample with a RF
field generated by a co-planar wave guide as a function of the in-plane applied magnetic field. We measured the real and
imaginary parts of the permeability as a function of frequency. An example of the signal measured for a applied field of 15
mT is represented Fig. 1 (b). Four different modes of different amplitude were detected at low field. The amplitude of the
signal depends on the sensibility of the measurement and on the susceptibility of the material.

Figure 1: a) Sketch of the double SAF b) Apparent permeability for an applied field of 15 mT as function of the frequency.
The two signals at high frequency were amplified by a factor of ×20 and ×15 in order to discern them.

We extracted the resonance frequency for each field by taking the maximum of the modulus of the apparent permeability.
The results are plotted in Fig. 2(a). At low field, we detected four modes, in agreement with the theoretical calculation
described in the literature [5]. However, from a field of 50 mT, we observe a splitting of the fundamental mode. We
hypothesize this to originate from structural defects between layers. These defects lead to a gradient of the magnetic
properties along the stack. To get a deeper understanding of our results, we will perform material characterisation, in
addition to the analytical calculation and simulation that we are currently performing. The micromagnetic simulation are
running using Tetrax [6, 7]. The parameters values were taken from experimental results in literature [4]. We see for the
fundamental mode a difference between experiment Fig. 2(a). and simulation Fig. 2(b). This originates from presence of
an anisotropy in our system that we didn’t implement in our simulation. In addition, in our experimental result, we get a
positive slope for the highest mode, whereas in our simulations, we get a negative one. To correct this, we have to optimize
our parameters of the micromagnetic modeling.
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Figure 2: Field dependence of the mode frequencies a) Experimental result b) micromagnetic modeling. The micromagnetic
modeling is implemented with a magnteric stiffness tmag = 8.5nm, a saturation magnetization Ms = 1.350 × 106A/m, a
interlayer exchange coupling Jex = −1.85mJ/m2, and a exchange stiffness Aex = 13.4 pJ/m
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In magnonic devices, the engineering of spin wave (SW) spectra plays a crucial role in manipulating local propagation
modes, enabling the control of SW propagation or remote field-induced SW excitation. One promising method for modifying
the local spin wave propagation is through ion implantation, utilizing a focused ion beam (FIB). In this study, we present a
combined VSM and Brillouin light scattering (BLS) investigation that demonstrates the impact of N atoms implantation on
the in-plane and out-of-plane magnetic anisotropy in a Fe thin film.

The focus of our research lies in low-dose implantation, where the out-of-plane anisotropy remains low enough to prevent
the stabilization of the well-known weak magnetic domains structure.[1], [2] Through systematic analysis, we uncover how
ion implantation with N atoms alters the magnetic anisotropy properties in the Fe thin film. By precisely controlling the
implantation parameters, we manipulate the spin wave spectra, achieving desired modifications in the propagation modes,
as shown in Fig. 1.

Figure 1: BLS measurements changing the angle of applied in-plane magnetic field and calculated (lines) using dipole-
exchange SW theory

By combining experimental measurements with computational simulations, we gain a comprehensive understanding of
the impact of N atoms implantation on the local spin wave propagation and magnetic anisotropy. The simulation results
provide valuable insights into the underlying mechanisms governing the observed experimental phenomena, validating the
effectiveness of our ion implantation approach in modifying the SW spectra.

The ability to tailor spin wave propagation and magnetic anisotropy through ion implantation offers new avenues for
developing advanced magnonic devices with enhanced functionalities. This research paves the way for the design and
optimization of future magnonic systems capable of efficient SW manipulation and remote field-driven SW excitation.
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At finite temperatures, the magnetization vector is not a fixed quantity. Quantized spin waves – magnons –excited by
thermal fluctuations reduce the magnetization from the full alignment of all spins. These magnons can carry or excite spin
currents and reciprocally can be excited by a spin current. The charge-spin conversion phenomena such as the spin Hall
effect allow for the excitation of magnons in a magnetic layer by passing an electric current in an adjacent nonmagnetic
conductor [1]. The total magnon population, and thus total magnetization can be modified by spin currents in ferromagnet
(FM)/normal metal (NM) bilayers [2, 3]. The excitation of magnons by an interfacial spin accumulation depends on the
relative direction of the accumulated spins and the magnetization. Spin-flip scattering leads to the creation (annihilation)
of magnons when the magnetization is parallel (antiparallel) to the spin accumulation, as depicted in Fig. 1. In turn, the
modification of the magnon population with spin current leads to a change of the magnetization M .

Figure 1: Schematic of the annihilation and creation of magnons in a FM due to current-induced spin accumulation in the
NM. The local magnetic moments are shown as purple arrows, the spin moments are shown as thin red and blue arrows.
The spin magnetic moment is opposite to the spin moment.

We demonstrate that this current-induced modification of the magnetization generates an additional nonlinear longi-
tudinal and transverse magnetoresistance for every magnetoresistance that depends on the magnetization. In particular,
we evidence the existence of the nonlinear anisotropic magnetoresistance, the nonlinear spin Hall magnetoresistance, the
nonlinear magnon magnetoresistance and the nonlinear planar Hall effect. We term this set of nonlinear effects the magnon
creation-annihilation magnetoresistances (m†mMRs) [4]. Interestingly, these effects have angular dependencies similar to
the ones associated with the spin orbit torque contributions [5] and can strongly affect the estimation of the spin orbit
torques if not properly accounted [6].

Our results apply to both insulating and metallic magnetic layers, elucidating the dependence of the magnetoresistance
on applied current and magnetic field for a broad variety of systems excited by spin currents. We evidence that these
magnon creation-annihilation magnetoresistances dominate the second harmonic longitudinal and transverse resistance of
thin Y3Fe5O12/Pt bilayers. As seen in Fig. 2 the second harmonic signal is similar to the expected angular dependence of
the nonlinear spin Hall magnetoresistance (SMR) and nonlinear planar Hall effect (PHE).
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Figure 2: Angular dependence of the second harmonic (a) longitudinal and (b) transverse resistance of YIG/Pt for different
values of the applied field at a current of 4 mA. (c, d) Expected angular dependence of the longitudinal and transverse
second harmonic resistance due to the nonlinear SMR, MMR, AMR and PHE.
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All Optical Switching (AOS) has been an active research area in the past years as it has a great potential for applications.
It has been shown that it is possible to switch magnetisation in ferromagnetic films with circular polarised femtosecond laser
pulses [1]. This phenomenon, named All Optical Helicity Dependent Switching (AO-HDS), and its underling mechanism
are not yet fully understood. Multiple origins for this effect have been proposed such as the Inverse Faraday Effect (IFE) [2]
and magnetic circular dichroism (MCD) [3]. The IFE describe the emergence of a static field like magnetisation in magnetic
materials when excited with a circular polarised light. While MCD describe a difference of absorption of circular polarised
light based on the direction of the magnetisation.

Plasmonics is another domain of great interest as it has been shown that plasmonic systems can confine and enhance
electromagnetic fields at the nano-metric scale [4]. Surface Plasmon Polaritons (SPP) can confine fields near the interface
between a metal and a dialectic. Furthermore, due its nature as propagating surface wave, SPP are intrinsically circularly
polarised, and its direction of polarisation is locked in the plane perpendicular to its propagation direction.[5].

Given their properties, SPP are prime candidates for efficient in plane magnetic manipulation and the study of the IFE.
They can easily be coupled to magnetic waveguide through grating coupling. And the resulting effect on the waveguide can
be measured with Magneto-optical Kerr Effect (MOKE).

Co40Fe40B20 thin film have been characterised before being pattern into gratings and waveguides. Optical transmission
measurements were performed to allow the study of the SPP coupling in the visible wavelength range. In parallel, optical
simulations were run using the Finite Element Method (FEM) with in COMSOL. This allowed to fit the resulting spectrum
and investigate the origin of observed structures in the spectrum. MOKE imaging was done to look into the impact of laser
coupled SPP on magnetic domain walls in the waveguide as illustrated in Fig.1b. Finally Time Resolved MOKE (TR-MOKE)
was carried out to measure SPP induced magnetic precession. To do so a pump prob system was used : a magnetic field
was applied along the waveguide, the pump was positioned on the grating while the probe was shifted onto the waveguide
as illustrated in Fig.1a.

Figure 1: (a) TR-MOKE experiment. (b) MOKE imaging experiment.

Transmission measurements show a resonance dip at the wavelength were SPP coupling should occur and shifts with
the periodicity of the grating. This way, coupling wavelength can be tailored and the coupling efficiency maximised. MOKE
images indicate some magnetic domain wall motion after a large number of pulses at high incident power. However, the SPP
origin of this effect could not be demonstrated. TR-MOKE measurements have shown some precession but its origin and the
impact of the coupled SPP is still unclear as the precession remains even if the incoming light polarisation is parallel to the
grating and therefore shouldn’t couple to the SPP. This precession could come from the magnetic grating shape anisotropy
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resulting in an unknown magnetic state a the interface with the waveguide.

Further measurements are needed to get an overview of the impact of SPP on magnetisation. Other materials could be
used to get stronger effects. Overall, this study will provide a better understanding of the interaction between light, matter
and magnetisation.
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Spin waves or magnons, have captivated researchers in the realm of condensed matter physics due to their significant
contributions to the dynamics of magnetic materials. They have potential applications in areas like spintronics, magnonic
logic, and memory devices,magnonic waveguides, sensors, and spin wave computing. In recent investigations, researchers
have directed their attention toward exploring spin waves in reduced dimensions including thin films, nanotubes, and 2D
materials [1]. Within this context, a novel area of interest lies in the study of spin waves within curved magnetic structures
[2].

Curved 3D magnetic systems have shown distinct static and dynamic properties with respect to their counterpart thin
films. Theoretical studies have shown that the interplay between the surface curvature and magnetic charges results in a
symmetry breaking which may lead to the emergence of anisotropies and magneto chiral interactions[3]. Such interactions
could lead to various effects such as curvature-induced spin wave non-reciprocity effect in ferromagnetic materials predicted
for nanotubes and curved magnetic thin shells, in a magnetic vortex state (VS) [4, 5]. In this communication, we report
about the fabrication and characterization of ferromagnetic nanoscale half-pipe structures suitable for the observation of
this effect.

Figure 1: a) TEM imaging of cross-sectional view of a magnetic half pipe on a silicon susbtrate. b) SQUID measurements
of an array of Permalloy half pipes c) Dependence of ferromagnetic resonance frequency as a function of applied field in
both axial and transverse configuration(see sketch in panel b). Circles: coplanar waveguide FMR, stars: cavity FMR, inset:
cavity FMR spectrum at 9 GHz in transverse configuration.

The fabrication process of the curved magnetic half-pipe structures involved several steps. We began by using e-beam
lithography to pattern 100 nm wide lines on silicon substrates. These pre-patterned substrates were then subjected to
reactive ion etching using SF6 gas[6], resulting in the formation of grooves of diameter 300 nm and height of 250 nm.
To create the desired half-pipe structures, a layer of Permalloy (Ni80Fe20) with a thickness of 20 nm was deposited onto
the pre-patterned substrate using a sputtering technique. This deposition process resulted in the formation of the half-pipe
structures, as depicted in Fig. 1 (a). The half pipe has a central part of width 120 nm and two rotated side branches. The
stack in Fig. 1 (a) is Titanium(5 nm)/Permalloy(12 nm)/Ti(5 nm) and filled with Platinum on the top for preparation of
the TEM grid.

SQUID magnetometry measurements revealed an easy direction of magnetization aligned along the length of the half-
pipe structures, and a semi-hard direction of magnetization oriented transverse to the half-pipe, as shown in the inset
of Fig. 1 (b). The magnetization dynamics in the permalloy half-pipe were investigated by broad band ferromagnetic
resonance(FMR) in a flip chip coplanar geometry. The dependence of the FMR frequency for the applied field for both axial
and transverse configurations as shown in Figure 1 (c) shows a magnetic uniaxial anisotropy of 75 mT along the half-pipe.
Complementary measurements using the cavity FMR technique( X band and Q band) reveal extra peaks (inset of Fig. 1
(c)), which we attribute to the strongly inhomogenous magnetic landscape developing under the field.
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Ferromagnetic transition metals and their alloys exhibit large thermooelectric power S compared to other metals. For
instance, the Seebeck coefficient of Ni and Co are found to be respectively −20 and −30 µV/K . In contrast large positive
thermopower of +15 µV/K is observed in bulk Fe. Moreover, due to their large electrical conductivity σ, they can exhibit
very large power factors PF= S2σ, which is the physical parameter that relates to the output power density of a thermoelec-
tric material, with the largest room temperature PF found for bulk Co [1]. The large thermopower of the transition metals
and alloys arises from contribution of the diffusion thermopower Sd because of the pronounced structure of the d-band and
the high energy derivative of the density of states at the Fermi level, large diffusion thermopowers are observed [2], and
significant potential contribution from magnon-drag thermopower SMD. Despite several experimental and theoretical work
carried out on different materials, it is still difficult to obtain experimental evidence for the existence of magnon-drag effects,
due to the complex separation of thermoelectric power into its different components. In pioneering work, Blatt et al. [3]
measured the thermopower in iron over a wide temperature range and concluded that in Fe, magnon-drag plays a dominant
role. Here, we report the measurements on the thermoelectric power of 45 nm diameter interconnected nanowire networks
consisting of pure Fe, dilute FeCu and FeCr alloys and Fe/Cu multilayers. The interconnected nanowire networks (as pre-
sented in Fig. 1) are obtained by direct electrodeposition in flexible polymer template with cylindrical crossed nanopores
from a sputtered gold cathode [1, 4], which can be locally removed to form an electrode pattern as shown in Fig. 1(a).

45 nm

B

Figure 1: (a) Device configuration for measurement of the (magneto-)thermopower in crossed nanowire network; the
magnetic field B is along the in-plane direction of the nanowire film. (b) SEM image of the self-supported interconnected
Fe nanowires showing a nanowire network with a 45 nm diameter and a 20% packing density.

Fig. 2(a) shows the temperature evolution of the thermopower of Fe, FeCu and Fe/Cu multilayer nanowire networks.
The values obtained for Fe are very close to those found in bulk Fe at all temperatures studied. The introduction of Cu
impurities in Fe leads to a reduction of the total measured thermopower which becomes negative for Fe90Cu10 nanowires
(∼ −7 µV/K at 300 K). A slope α ∼ −0.05 µV/K2 can be extract from the linear Sd contribution from all these data, which
corresponds well to the value extracted from previously reported measurements in bulk Fe, FeCo and FePt alloys (see Fig.
2(b)). This indicates that only SMD is affected by the introduction of Cu, Co and Pt impurities. Subtracting the linear Sd
contribution from the data, SMD has been estimated, as reported in Fig. 2(c). For pure Fe, we estimated Sd ≈ −15 µV/K
from our data, which is largely supplanted by the estimated SMD ≈ +30 µV/K [4]. Fig. 2(a) also shows that the measured
thermopower for Fe/Cu multilayer is negative and varies almost linearly with temperature, reaching about −11 µV/K at
300 K. This indicates a dominant contribution of charge carrier diffusion to the thermopower, as previously found in other
magnetic multilayers, and a cancellation of the magnon-drag effect, leading to this large and negative value, which is slightly
smaller than Sd ≈ −15 µV/K due to the contribution of the small positive thermopower of the Cu layers. The magneto-
resistance (MR) and magneto-thermopower (MTP) effects have been measured on Fe/Cu multilayer nanowires (see Fig.
3(a)) showing larger MTP effect compared to MR. From these measurements, we can extract the linear Gorter-Nordheim
relation between ∆S(H) = S(H) − SH=0 vs. ∆G = 1/R(H) − 1/RH=0 (see Fig. 3(b)), which is characteristic of a dominant
diffusion thermopower. Finally, the spin-dependent Seebeck coefficient S↑ − S↓ in Fe has been directly extracted from the
data in Fig 3(a) and reaches about −7.6 µV/K at ambient temperature (see Fig. 3(c)) [4].
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Figure 2: (a) Temperature dependence of the thermopower S of 45 nm diameter nanowire networks made of pure Fe, Fe-
rich FeCu alloys and Fe(7 nm)/Cu(10 nm) multilayer. (b-c) Estimated values of the slope α of the linear Sd contribution (b)
and estimated room temperature values of Smd (c) for bulk Fe and dilute Fe-based alloys: Fe and FeCu nanowires (present
work), FeCo [5] and FePt [3].

Figure 3: (a) Room-temperature magnetoresistance (in blue) and magneto-Seebeck (in orange) curves for a Fe/Cu multi-
layer nanowire network. (b) Linear variation of ∆S(H) vs. ∆G at different temperatures, illustrating the Gorter-Nordheim
characteristics. (c) Temperature variation of the measured Seebeck coefficients at zero and saturating magnetic fields, SAP
and SP, along with the calculated spin-dependent Seebeck coefficients S↑ and S↓.
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Spin dynamics in the form of broadband VNA - FMR provides a convenient and highly-sensitive measurement of the
magnetic properties and the magnetic behaviour of low dimensional magnetic systems. In this work, we present a detailed
study of multilayer systems consisting of a hard magnetic NdCo x film (with x = 7.5 and 9) coupled to a soft thin magnetic
film via an intervening Al film of 5 nm. The principal aim of this study is to determine the effect of the magnetic coupling
between the hard and soft layers. The hard magnetic NdCo layer has perpendicular anisotropy, which results in a periodic
magnetic stripe domain structure at magnetic fields below the saturation field.

In previous work, we have studied the above system using permalloy as the soft layer [1], where we observe hysteretic
behaviour in the soft magnetic layer which derives from the properties of the NdCo film, while the FMR signal from this
layer (NdCo) is not directly observed in the spectra [2, 3], as shown in Fig. 1 for the sample with NdCo7.5 (65 nm)/Al (5
nm)/Py (10 nm). We note that the samples are saturated in the positive (negative) direction before measurements in the
descending (ascending) field measurement.

Overview of New Samples Results for Hdc?Hrf with MkHdc Results for Hdc?Hrf with M?Hdc Comments on and Summary of New Results

Sample NC7565A5P10

HDC HDC

VNA-FMR Results March 2020 UVSQ/CNRS GEMaC

(a) (b)

Figure 1: Frequency – field characteristics for the NdCo7.5 (65 nm)/Al (5 nm)/Py (10 nm) sample for the (a) descending
and (b) ascending field branches.

These spectra show an intense, and reasonably sharp, resonance line that derives from the Py layer. The behaviour
is asymmetric and arises from the interaction of the Py layer with the NdCo film, being intimately related to the stripe
domain structure of the latter [4] and thus gives rise to the observed magnetic hysteresis. Comparison with magnetometry
measurement also show a correspondence with critical and coercive fields [2, 3]. In the samples where the Py layer is
replaced with a 12 nm YIG film, there are a number of additional features that can be observed. Due to growth requirements,
the YIG layer is deposited before the NdCo film, while for the Py samples, the NdCo layer is deposited first. What is interesting
to note are the broad dark regions in these measurements which arise from the NdCo films. For the sample with NdCo9 , the
out-of-plane anisotropy is fairly weak and we can observe the in-plane components of the magnetocrystalline anisotropy.
These are indicated in Fig. 2 (a) (i) and (iii) for the easy and hard axes, respectively. The blue lines denote the NdCo signal,
while the red line corresponds to that for the YIG layer. While YIG spectra are practically identical for the two in-plane
directions measured, the NdCo resonance lines are different. This shows an in-plane anisotropy component for the NdCo9
, with an anisotropy field of HK ≃ 0.2 kOe, that conforms to the zero-field resonance of f0 = γHK/2π≃ 5 GHz.
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Overview of New Samples Results for Hdc?Hrf with MkHdc Results for Hdc?Hrf with M?Hdc Comments on and Summary of New Results

Sample A5NC7565A5 (5⇥ 5 mm2)
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VNA-FMR Results March 2020 UVSQ/CNRS GEMaC
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Figure 2: Frequency - field characteristics for the (a) YIG (12 nm)/Al (5 nm)/NdCo9 (65 nm) sample and (b) YIG (12
nm)/Al (5 nm)/NdCo7.5 (65 nm) sample. The descending (ascending) field branches are indicated by red (blue) arrows
and the easy (top - i and ii) and hard (bottom - iii and iv) are also shown. The red lines mark the YIG signal, while the blue
that for the NdCo.

We now consider the YIG (12 nm)/Al (5 nm)/NdCo7.5 (65 nm) sample, whose spectra are shown in Fig. 2(b). Here the
NdCo out-of-plane anisotropy is stronger and the low-field behaviour is much changed with respect to that of the x = 9
sample. Firstly, there appears to be little or no significant in-plane anisotropy in the NdCo layer. Secondly, the low-field
switching is now asymmetric and shows that the hysteresis in the FMR arises from here and is imprinted in the YIG film.
Indeed this latter shows very similar hysteretic behaviour to that in the Py samples shown earlier. The switching in the NdCo,
on passing through the origin, makes a very abrupt change, as indicated by the red vertical dashed line, Fig. 2(b) i and ii).
This can now be seen directly as causing the jump in the soft layer (YIG) resonance line and unequivocally demonstrates
the origin of the FMR hysteresis in this layer.
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With the rapid development of miniaturized devices in spintronics, the dynamics of nanomagnets is of both theoretical
and practical interest. The equations of motion for a magnetic moment, embedded in a medium, that describe the average
magnetization, are differential equations, that contain time derivatives on both sides and cannot be–in general–recast in
a form that is useful for usual numerical methods. Physics-Informed Neural Networks (PINNs) provide the framework for
solving differential equations, without imposing a particular format. They are, thus, ideally suited for solving the equations
for a dampened (parametrized by λ) and inertial magnetic moment (parametrized by τ) [1, 2], as given by

Ṁ = M × �Ω+λṀ + M̈
�

where t/τ becomes a rescaled time and Ω≡ τω is a constant precession axis. We have benchmarked the performance of
feedforward neural networks in accomplishing such tasks and discuss advantages and shortcomings. We have also adapted
this approach to the case of more than one sub-lattices, making it possible to address the modeling of ultrafast switching of
both ferrimagnets and antiferromagnets [3].
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Figure 1: Magnetization M and angular momentum J dynamics predicted by symplectic integration and PINNs.
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L’effet Tcherenkov est un phénomène existant pour tous types d’ondes. Il peut être observé lorsque la source d’une onde
poursuit un mouvement à une vitesse supérieur à la vitesse de propagation de l’onde.

En 2013, Ming Yan et al [1] ont démontré, à l’aide de simulations micro magnétique, l’existence d’un effet Tcherenkov
pour les ondes de spin générées par une impulsion de champ magnétique en mouvement.

Les auteurs ont aussi démontré que pour des systèmes ferromagnétiques 2D et 3D le front d’onde prend la forme un
cône.

Dans nos travaux, nous avons reproduit les résultats obtenus par M. Yang en utilisant le logiciel de simulation micro
magnétique MuMax3. Nous avons aussi étudié le cas d’une paire de sources qui garde une distance constante et se déplaçant
à la même vitesse.

Pour certaines distances et vitesses, nous avons observé des interférences destructives de nos ondes de spin devant ou
derrière nos sources. Dans ces situations, le système se comporte comme une antenne unidirectionnelle d’onde de spin,
pouvant généré des ondes de spin à différentes fréquences uniquement devant ou derrière nos sources. L’un des principaux
défis pour réaliser des observations expérimentales de l’effet Tcherenkov pour les ondes de spin est de créer une source
pouvant se déplacer à une vitesse de l’ordre du km/s. L’une des idées possibles serait d’utiliser le champ magnétique d’un
vortex au sein d’un supraconducteur [2] (Abrikosov lattices), qui pourrait se déplacer au sein d’une couche supraconductrice
placer au-dessus de la couche ferromagnétique.

Figure 1: a) impulsion magnétique, b) paire d’impulsions
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Recent progress in magneto-acoustic effect have demonstrated the benefits of using circularly polarized vector fields to
excite the magnetization dynamics [1–3]. In this case, a discrimination occurs depending on the sense of gyration and it is
often assumed that the proper polarity of angular velocity is uniquely set by the direction of equilibrium magnetization and
the sign of the gyromagnetic ratio.

Using an axisymmetric eigen-solver (developed by Thierry Valet), we have found numerically that the above statement
is in general not true and the angular velocity can spatially change its sign relative to the magnetization vector. It emerges
in finite size object due to self-demagnetizing effect, where a spin-wave minimizes its magnetostatic energy by inverting its
sense of gyration. This leads to the spatial segregation of the magnetization dynamics in different regions with opposite
angular velocity.

As an example we compare in Fig.1 the dynamics of two Walker modes propagating either clockwise or counterclockwise
along the edge of a normally magnetized disk. For each eigen-value, ω0, the eigen-solver associates two eigen-vectors m0◦

and m90◦ , respectively the phase and the quadrature, which allows to reconstruct the time evolution of the dynamical
magnetization m=m0◦ · cos(ω0 t)−m90◦ · sin(ω0 t). Using the colormap shown in the legend, we plot the spatial variation
of the angle between m0◦ and m90◦ for two indices ℓ = ±8. Here a change of color indicates a change in the direction of
rotation.

The implications of our findings are relevant to the conservation of total angular momentum inside a magnetic system.

Figure 1: Comparison of the dynamics of two Walker modes with azimuthal indices ℓ = ±8 propagating along the edge of
disk. The figure is a view along a sagittal section. The colormap shows the angle between m0◦ and m90◦ respectively the
phase and quadrature eigen-vectors.
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Magnons that describe the Eigen excitations of a magnetic system possess unique properties that make them suitable
for carrying, processing, and storing information. For instance, they exhibit nonlinear interactions when excited at high
amplitudes. These nonlinear interactions can be used to perform nonconventional computing which aims at reducing the
energy consumption in data processing. This study presents micromagnetic simulations to understand magnon nonlinear
interactions in Yttrium iron garnet (YIG) disks with a vortex state. We obtain the dispersion relation which is essential
in understanding the linear and the nonlinear phenomena. Then we move from linear to the nonlinear regime, focusing
on three magnon splitting and coupling with the core gyration. We use MuMax3, a software that utilizes finite difference
discretization of space, to perform the micromagnetic simulations. It calculates the magnetization dynamics in both space
and time. The micromagnetic parameters used in the simulations are: saturation magnetization Ms = 140 × 103A/m,
damping constant α = 10−3, exchange stiffness constant Aex = 3.7 × 10−12J/m and first order cubic anisotropy constant
Kc1 = −464 J .m−3. Due to cubic anisotropy, the static out-of-plane magnetization outside the vortex core will not exhibit
uniformity. Instead, it will display a distinct three-fold symmetry.

The disk used in this study has a thickness of 65 nm and a diameter of 500 nm. The rotational symmetry of the disk
leads to the formation of radial eigenmodes with mode number n and azimuthal eigenmodes with mode number m[1].
To obtain the dispersion relation, we excite the disk in the r.f. range using a cardinal sine function perpendicular to the
disk plane with specific spatial symmetry, a Bessel function to excite a given radial mode, and a cosine function to excite
azimuthal mode. Fig.1 shows the obtained dispersion relation with the mode spatial profiles [2]. It shows a splitting of the
azimuthal number 1 due to the hybridization with the core gyration. The mode at 2.019 GHz exhibits azimuthal number 3

Figure 1: The dispersion relation for 500nm YIG disk with the mode spatial profiles

and radial number 0 and can be excited despite the symmetry of the excitation due to the cubic anisotropy.
Applying a 0.01 mT rf magnetic field amplitude yields a linear response, as indicated by the diagonal line in Figure 2a.

Increasing the rf field to 0.1 mT produces some bands of nonlinear interactions. At an excitation frequency of 2.92 GHz,
corresponding to radial mode number n= 1 and azimuthal mode m= 0 in Figure 1, we observe four magnon modes equally
distributed around fexc , with a frequency spacing of 170 MHz (δ f ). The in-plane component of the magnetization exhibits
a gyration with a frequency of 170 MHz starting after 200ns, the same as the modes distributed around fexc , which indicates
coupling to the gyration frequency. Exciting the disk with 2mT rf magnetic field amplitude results in different processes
of nonlinear interactions. The vertical bands below 3GHz are coming from coupling with the core gyration. However the
nonlinear interactions above 4GHz are coming from 3 magnon scattering except the process at 4.02GHz where we have two
kinds of nonlinear interactions. Initially, three magnon scattering occurs at 1.824GHz and 2.194GHz, followed by gyration
motion that begins 400ns later. Additionally, the secondary modes arising from three magnon scattering couple to this
gyration, as demonstrated by the evolution of the mode population over time in Fig.3 so the gyration is like a relaxation
channel for these modes. These two modes coming from three magnon scattering have the same radial and azimuthal
numbers as the selection rule of having different radial numbers is relaxed due to the hybridization with the core gyration
[3]. Another two modes appear at the same time as the gyration motion, the mode which has 3 fold symmetry and a mode
with azimuthal 2 and radial 0. The effect of having two processes, three magnon scattering followed by coupling with the
gyration motion is coming from the anisotropy because removing the anisotropy will suppress the gyration motion, and we
will have just three magnon scattering processes.
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Figure 2: The power spectral density map for 500nm YIG disk with 65nm thickness a)the linear response at 0.01mT rf
magnetic field amplitude b)the nonlinear response at 0.1mT c)2mT

Figure 3: The evolution of the mode populations and the spatial profiles for the gyration motion and the secondary modes
of three magnon scattering when the disk is excited with 2mT and 4.02GHz
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Mastering spin waves interference at the sub-micron scale is central for the development of wave-based computing
applications such as reservoir computing [1], holographic memory [2], or spectral analysis [3]. The complexity of spin
dynamics, inherently due to its dependence to numerous parameters, and also to the intricacy of magnon-magnon interac-
tions, requires heavy computational methods, which can limit the scope of study. In this context, we developed an efficient
tool to study the near-field diffraction (NFD) patterns of spin wave in homogeneous out-of-plane magnetized thin films
for arbitrary distribution of excitation field [4]. In this communication, we extend our NFD model to in-plane magnetized
films, taking into account the coupling between higher order standing spin-wave modes in order to recover the thickness
dependence of the interference patterns. We show in particular how caustic beams can be directly emitted from a sharply
constricted stripline (see Fig. 1). This model allows to explore efficiently magnon beamforming over the wide range of
parameters such as field, frequency, magnetic properties, shape and scale of antennas.

Figure 1: (a) Sketch of a constricted stripline. (b) NFD and (c) MuMax3 micromagnetic simulations of the spin wave
amplitude mx in a 25 nm thick CoFeB film resulting from a 100 nm-wide and 1µm long constriction as sketched in (a) at
f=13 GHz, and for a external static field µ0Hex t=100mT applied along y (color palette units in mT).

Acknowledgments

This work was supported by the French ANR project "MagFunc", the Département du Finistère through the project “SOS-
MAG”, and the FACE Foundation & French Embassy through the project "Magnon Interferometry".

References

[1] A. Papp, G. Csaba, and W. Porod. Characterization of nonlinear spin-wave interference by reservoir-computing metrics.
Applied Physics Letters 119, 112403 (2021).

[2] Alexander Khitun. Parallel database search and prime factorization with magnonic holographic memory devices. Jour-
nal of Applied Physics 118, 243905 (2015).

[3] Ádám Papp, Wolfgang Porod, Árpád I. Csurgay, and György Csaba. Nanoscale spectrum analyzer based on spin-wave
interference. Scientific Reports 7 (2017).

[4] V. Vlaminck, L. Temdie, V. Castel, et al. Spin wave diffraction model for perpendicularly magnetized films. Journal of
Applied Physics 133, 053903 (2023).

190



Poster 2.18, November 15th, 10h50–13h00

Time-resolved Noncommutativity of Parametric
Excitations in YIG disks

Maryam Massouras1, *, Massimiliano d’Aquino2, Salvatore Pierna2, Claudio Serpico2, Jean-Paul
Adam1, György Csaba3, and Joo-Von Kim1

1Centre de Nanosciences et de Nanotechnologies, CNRS, Université Paris-Saclay, Palaiseau, France
2Università degli Studi di Napoli Federico II, Naples, Italy
3Pázmány Péter Catholic University, Budapest, Hungary

*maryam.massouras@c2n.upsaclay.fr

Parametric pumping is an efficient way to populate single modes in magnetic microstructures. For information pro-
cessing, it is essential to examine the influence and interactions between modes. We examine this phenomenon with the
simulated excitations of 1-µm diameter YIG disks at 300 K, whereby we investigate the transient mode population dynamics
computed with the MuMax3 code [1] by projecting the magnetization dynamics onto precomputed eigenmode profiles [2]
[Fig. 1.b)]. The figure highlights the main features for two modes, k = 8,11, with frequencies of f8 = 2.813 GHz and
f11 = 2.885 GHz. Fig. 1.c) shows the evolution of the mode populations when the system is excited at fA = 2 f8 and
fB = 2 f11 driven at br f 8 = 0.90 mT and br f 11 = 1.05 mT (supercriticality at 1.5) separately. The time-resolved populations
show that modes k = 8 and k = 11 populations dominate along with satellite modes k = 14, 5 for the former and k = 17,7
for the latter. When these driving frequencies are toggled using the sequences in Fig. 1.d), we see from the mode spectro-
gram that the order of the frequency toggle has a strong bearing on the overall dynamics: we observe mode inhibition by
the first excitation. However this noncommutativity differs depending on the excited modes: commutativity, mode suppres-
sion, satellite modes suppression are also observed. Such rich nonlinear behavior is indeed very promising for information
processing.
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Figure 1: a) Geometry. b) Eigenmode profiles i. k = 8; ii. k = 14; iii. k = 5; iv. k = 11; v. k = 17 and vi. k = 7. c)
Mode population versus time under a driving frequency of fA = 2× 2.813 GHz (top) and fB = 2× 2.885 GHz (bottom). d)
Populations of the first 25 modes under the pulse sequences fA, fA + fB, fB (top) and fB, fB + fA, fA (bottom), where the
duration of each pulse is 500 ns.
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Spin-orbit interaction (SOI) at metallic interfaces with broken inversion symmetry [1] has been recently the centre of
spintronic research because it enables fast and efficient magnetisation dynamics for spin-based memory (e.g. SOT-MRAM),
skyrmion and neuromorphic devices. Indeed, the dynamics of magnetisation in spintronics devices is mainly controlled
by the efficient spin-orbit torques (SOT) exerted by the generated out-of-equilibrium transverse angular momentum like
played by the spin currents. Two main mechanisms i.e. (a) spin Hall effect (SHE) in heavy metals such as Pt, Ta and (b)
spin or orbital Rashba effect (REE) at interfaces may thus contribute leading to a damping-like (DL) and a field-like (FL)
torque [2]. More recently, the occurrence of Rashba effects and orbital Hall in systems integrating light elements were also
shown to generate torque or to enhance the already existing SOT in well engineered stack and heterostructures [3, 4].

In order to tackle these fundamental issues and provide some routes for improvement of SOT-based devices, we demon-
strate here how the insertion of a light metal element interface profoundly affects with a strong benefit both the nature of
spin-orbit torque and its efficiency in terms of damping-like and field-like effective fields acting on a very adjacent thin Co
layer. We will more focus on the case of Pt/Co/Al/Pt systems with variable thicknesses integrating a top Co/Al interface
[5]. We show how the insertion of a Co/Al interface leads to a huge enhancement, by about one order of magnitude, of
the FL torque upon the increase of the Al thickness up to 3 nm. By varying the Al and the bottom Pt thicknesses, we un-
doubtedly demonstrate the occurrence of a Rashba interaction in Co/Al that we discuss in terms of spin vs. orbital Rashba
interactions. On the other hand, from the variation of the torque vs. the Co thickness at the very low thickness limit (tCo
varying from 0.55 to 1.4 nm) (see Fig. 1), we extract the main parameters governing the transverse spin-dissipation related
to spin-precession and spin-decoherence and discuss the ensemble of those phenomena that we correlate to the respective
spin-Hall magnetoresistance (SMR) and anomalous Hall effect (AHE) response.

Starting from such discovery of large Rashba effect the Co/Al interface in these series, we have presently investigated
the SOT properties of CoFeB/Al, Co/CoFeB/Al and CoFeB/Co/Al systems. Such systems are more adapted to MRAM tech-
nologies because CoFeB presents less damping and less coercivity than Co. The measurements have been performed in the
2nd harmonic voltage method in both DL and FL configurations as well as both angular and field sweep geometries.

The resulting FL and DL SOT properties vs. thickness, anisotropy and magnetic domain configuration will be largely
discussed. We will give the main trends for each systems.
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Figure 1: Co layer thickness dependence of (a) DL-SOT field and (b) FL-SOT fields multiplied by Co thickness for
1011A/m2 current density in Pt in Pt8|Co(tCo)|Al1.4|Pt3 (red circles), Pt8|Co(tCo)|Cu1.4|Pt3 (blue triangles) and
Pt8|Co(tCo)|Al3|Pt3 (orange circles) samples (c) ζ = HF L/HDL as a function of tCo. The dashed lines are fits with the
theoretical model.
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Spin torque nano-oscillators (STNOs) are devices that exhibit several interesting properties, such as wide frequency
range, that could be very interesting for technological applications, in high-frequency communications and RF detection
just to name a few. These devices also appear to be good candidates for non-conventional computing, and artificial neural
networks, owing to the very interesting non-linear dynamical regimes they present [1, 2].

One of the most commonly studied types of STNOs are Spin-Torque Vortex Oscillators (STVOs). These structures often
consist of a stacking of a ferromagnetic free layer in a vortex magnetization, a non-magnetic (or insulator) spacer layer,
and a pinned ferromagnetic layer. Several studies have shown that when applying a current through those devices, the
vortex core can exhibit self-sustained gyrotropic motion. The gyration regimes have been shown to vary with the magnetic
configuration of the pinned layer. For instance, the magnetization component perpendicular to the film plane governs the
existence of steady-state gyration.

In this work, we study the effect of a non-uniform polarizer on the dynamics of the vortex core in a magnetic tunnel
junction (MTJ) STVO. This work consists of a numerical investigation, using the open source micromagnetic simulator
MuMax3 [3]. The studied STVO is based on the geometry shown in Ref. [2], which comprises a circular magnetic tunnel
junction with a free ferromagnetic layer of 300 nm in diameter and 7 nm in thickness. The fixed layer’s magnetization
consists of a non-uniform, almost circular, in-plane configuration, obtained as a ground state under the effect of an Oersted-
Ampere field. A schematic of the STVO geometry, along with the profile of the magnetization in both the free and the fixed
magnetic layers are given in Figure 1.

Figure 1: Schematic of the simulated STVO, where J indicates the applied current flow. The magnetic configuration in both the
fixed and the pinned layers is also depicted.

In addition to the exchange and dipolar interactions, we account for contributions from current induced Oersted-Ampere
field, along with the damping- and field-like Slonczewski spin-transfer torques [4] in the equations of motion. This last
contribution is controlled by the secondary Slonczewski spin-transfer torque parameter ε′ in MuMax3.
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Our simulations suggest that the introduction of (circular) non-uniformity in the in-plane magnetized polarizer favors
the core dynamics in the free layer. This is illustrated by the power spectral density (PSD) maps in Figures 2a and 2d, which
show the evolution of the gyration frequency of our core in respect to the applied current I, for two different values of the
field-like torque parameter ε′ = {−0.2;0.1}. These maps were obtained by running simulations for each current value, and
computing the FFT of the in-plane magnetization component to get their respective frequency spectra.

Both these cases present a clear pure gyrotropic motion for low currents up to approximately 11mA for ε′ = 0.1 and 12
mA for ε′ = −0.2. At higher current values, the system exhibits non-linear dynamics in both cases. In the case of ε′ = 0.1
(Fig. 2a), 11 mA represents a threshold above which we no longer observe oscillations, but instead a pinning of the vortex
core. When ε′ = −0.2 (Fig. 2d), above the threshold of 12 mA, more gyration frequencies start to appear for the same
current value. We were able to attribute this to core reversal dynamics through the analysis of our results. At very high
currents ( ≥ 16 mA), both cases exhibit an unstable and possibly chaotic state. Some of the core trajectories are shown in
Figures 2b , 2c, 2e and 2f to better visualize those oscillation regimes.

(a) (b) (c)

(d) (e) (f)

Figure 2: (a) and (d) show the color map of the power spectral density (PSD) as a function of applied current for ε′ = 0.1
and ε′ = −0.2, respectively.(b),(c) Core trajectory for ε′ = 0.1 and I = 8 and 16 mA, respectively. (e),(f) Core trajectory for
ε′ = −0.2 and I = 8 and 13.5 mA, respectively.
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Spin torque nano-oscillators are spintronic devices in which radiofrequency magnetization oscillations can be gener-
ated through spin-transfer effects. Due to their nonlinearity, these devices display interesting properties such as spectral
purity, frequency stability, and high tunability, opening up possibilities from wireless telecommunication to neuromorphic
computing [1].

In this study, we will focus on vortex-based spin-torque nano-oscillators (STVO) and study the response of mutually
coupled STVOs. To couple them, we use the RF current emitted by one STVO, which is first amplified and then sent through
the antenna located above the second STVO and vice versa. The resulting external RF field hence mediates the coupling
between the two STVOs.

Using this approach, beyond the expected improvement of their RF properties, i.e., power emission and spectral purity
[2], we have recently shown that strong coupling can lead to new phenomena beyond synchronization, such as amplitude
death, mode branching, and non-trivial states associated with exceptional points (EPs) [3]. EPs, defined as singularities of
non-Hermitian problems, can indeed emerge from such systems. Combining experimental results (Fig. 1) and theoretical
modeling (Fig. 2), we succeed in demonstrating that the presence of mode branching (Fig. 1) can be connected to the
coalescence of the system complex eigenvalues, i.e., the existence of an EP, in a specific current range.

Figure 1: Oscillation frequency spectra of the coupled
STVOs versus STVO2 current IDC ,2 and fixed IDC ,1. An
EP is observed at (I∗1 ,I2) = (-6,9.45) mA.

Figure 2: Corresponding complex eigenvalues versus
STVO2 current IDC ,2. Eigenvalues are in dashed (un-
coupled) and solid (coupled) lines. Raw data points are
represented by dotted lines.

The next step is to investigate, both in frequency and time domain, how these EPs’ existence is sensitive to the individual
properties of each STVO and the path used to approach this EP state [4]. For instance, we also observe a dependence
on the coupling strength, which may be another key for the EP’s control. As depicted in Fig. 3 for three different gain
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Figure 3: Oscillation frequency spectra of the coupled STVOs versus STVO2 current IDC ,2 and fixed at I∗1 = -6 mA for
different gain amplitude of 10, 15 and 20 dBm.

amplitudes from +10 to +20 dBm, we relate the appearance of branching to the strengthened interaction between the
coupled oscillators.

We believe that this study opens spintronic devices to the field of non-Hermitian Hamiltonian physics, already observed
in several variable loss/gain systems in photonics and electronics [5]. By proving the engineering of EPs for high sensitivity
mode control, the objective will be to show the potential of this technique in magnetic sensor-type systems.
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A magnetic vortex is a topologically protected texture leading to nonlinear dynamics. These two features confer a
high interest to devices like spin-torque vortex oscillators (STVOs). A magnetic vortex is characterized by its chirality which
describes its curling in-plane magnetization, and its polarity that defines the orientation of the out-of-plane magnetization in
the vortex core. Periodical reversal of the vortex polarity triggered by different external magnetic field excitations, in-plane
ac current [1] or dc current flowing through a nanocontact in a spin-valve [2] were reported. It can lead to a confinement
regime in which the trajectory of the vortex core remains bounded within two orbits smin and smax. However, to the best of
our knowledge, it was not shown for a MTJ-based STVO excited by an out-of-plane dc current.
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Figure 1: a) STVO with the polarizer in green, insulator in gray and the free layer with a magnetic vortex as a ground state
in blue. b) Evolution of the reduced vortex core position s(t) in the steady-state regime saturating at s∞. The dashed line is
the fit using Eq. 1. c) Evolution of s(t) in the confinement regime. The trajectory is plotted in red (resp. blue) for a positive
(resp. negative) polarity. The black dashed line is the estimation of s(t) using Eq. 1 and s∞. Pink stars indicate polarity
reversals. d) Trajectory of the vortex core inside the magnetic dot while in the confinement regime. The vortex core motion
is represented by arrows. When the polarity is negative, the gyration sense is reversed.

A magnetic dot made of permalloy with a radius R of 500 nm and a thickness h of 9 nm is studied by micromagnetic
simulations using mumax3 [3] (see Fig. 1a)). A spin-polarized current perpendicular to the plane is injected to trigger the
vortex core motion due to spin-transfer torque. The evolution of the reduced vortex core position s(t) in the auto-oscillating
regime is fitted with the following equation [4] as seen in Fig. 1b):

s(t) =
s0√√√�

1+
s2
0

α/β

�
e−2αt − s2

0

α/β

(1)

with s0 the initial reduced vortex core position, α and β two values that depends on the input current density Jdc. These
values can be fitted linearly by α(Jdc) = aJ · Jdc+ a and β(Jdc) = bJ · Jdc+ b. The steady-state orbit can then be predicted by
s∞(Jdc) =
p−α(Jdc)/β(Jdc) as seen in Fig. 2a). In addition, s∞(Jdc) and α(Jdc) are used to predict s(t) in the confinement

regime as in Fig. 1c). Indeed, fitting the confinement regime with Eq. 1 gives poor results. So, the evolution of s(t) in the
confinement regime is predicted instead. Finally, in both the auto-oscillating and resonant regimes, the evolution of s(t)
can be analytically modeled using this method.

Depending on the input current density Jdc, three regimes arise. The resonant and steady-state regimes are well-known
and correspond to the regimes when the vortex core relaxes to its equilibrium position (s = 0) and where it reaches a stable
orbit (s = s∞). The third regime is the confinement regime where the vortex core is confined between two orbits smin and
smax due to a double reversal process. First, the vortex polarity is reversed through the process of creation and annihilation
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of a vortex-anti-vortex pair [1]with the emission of spin-waves [5]. As the velocity of the vortex core increases, it undergoes
a deformation with the development of a dip with an opposite magnetization. At the critical velocity [6], the dip amplitude
is the same as the one of the vortex core and the vortex polarity is reversed. The vortex is then in the resonant regime
and relaxes towards its equilibrium position as seen in Fig. 1d). Then, the vortex experiences a second polarity reversal
as a new dip reaches the same amplitude of the vortex core and spin-waves are once again generated. At the end of this
second reversal, the vortex core is at smin and in the auto-oscillating regime again. This double reversal happens periodically,
leading to a sustained confinement regime that can be described by three parameters: smin, smax and the frequency fconf at
which the double reversals occur.

The orbits smin and smax decrease [2] with the amplitude of Jdc while fconf increases as seen in Fig. 2. Thus, the frequency
of spin-waves generation can be controlled with Jdc. Furthermore, the vortex chirality has a huge impact on the vortex
dynamics. Indeed, the confinement regime is only seen for a negative chirality as for a positive chirality, the vortex core is
expelled from the magnetic dot before it reaches its critical velocity.
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Figure 2: a) Evolution of s∞, smax and smin with Jdc. The dashed blue line is the prediction of s∞ using α(Jdc) and β(Jdc)
that is injected in Eq. 1 to model s(t). The resonant, steady-state and confinement regimes are symbolized by pink, blue
and green backgrounds respectively. b) Evolution of fconf with Jdc.

The confinement regime presents a nonlinear and periodical dynamics that can be interesting for neuromorphic com-
puting with STVO as the vortex core remains in a transient regime and never reaches saturation. The dynamics of the vortex
core is piece-wise analytically described in the confinement regime, this is a first step towards its complete modeling. In
addition, the emergence of the confinement regime depends on the vortex chirality and Jdc as well as smin, smax and fconf.
Thus, Jdc can be used to tune the confinement regime properties.
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In the last decade, intensive efforts have been made to stabilize chiral spin textures, such as magnetic skyrmions, and
their current-induced dynamics by harvesting interfacial spin-orbit coupling effects for fast and energy-efficient spin-based
memory, sensor and neuromorphic devices. The stabilization of skyrmions is a consequence of energy competition between
several effects, notably the interfacial perpendicular magnetic anisotropy (PMA) and chiral Dzyaloshinskii–Moriya inter-
action (DMI). A typical structure of the multilayers of interest is composed of a heavy material (e.g. Pt, Ta, W), which
serves as a source of spin-orbit coupling, a magnetic material (e.g. Co, Fe) and a lighter element (e.g. Ru, Al, Cu) in which
chiral domain walls or skyrmions can be stabilized [1]. Another consequence of spin-orbit coupling is the charge-spin in-
terconversion either via the spin Hall effect in the bulk of heavy metals (Pt, Ta, W) or the Rashba Edelstein effect (REE) at
inversion asymmetric interfaces, notably at interfaces with oxydes. However, the role of light element interface on interfa-
cial anisotropy, DMI and charge-to-spin conversion mechanisms has been overlooked so far and needs substantial attention.

In this study, we have investigated how the interfacial anisotropy, spin-orbit torques and DMI evolve with a light element
interface in our model system: Pt|Co|Al [2]. So far, these properties have been considered to be influenced by the heavy-
metal/ferromagnet interface only. We have experimentally measured the occurrence of an unexpected strong REE in terms
of dominating field-like torque in all metallic Pt|Co|Al systems with perpendicular magnetic anisotropy. However and
historically, it was considered that optimal oxidation of the Co|Al interface is necessary to obtain PMA [3]. The PMA in
Pt|Co|AlOx is considered to be promoted by the hybridization of d-orbitals of Co with p-orbitals of oxygen at the Co|AlOx
interface. Manchon et al. found that in the absence of oxygen atoms at Co|AlOx interface, the Co magnetization goes
in-plane.

Our objective has been to perform a systematic study of the SOC effects in Ta(5)|Pt(8)|Co(0.9)|Al(tAl) system (thickness
indicated in nm) by varying the Al thickness from 0.1 nm to 3 nm without any capping layer. Our x-ray photoelectron
spectroscopy (XPS) and x-ray absorption spectroscopy (XAS) results reveal that for tAl = 0.7 nm, the Co remains unoxidized,
whereas the Al is fully oxidized, establishing perfect conditions to achieve PMA. For this condition, the anisotropy field of
Co is found to be 1.2 T, which decreases with Al thickness and the easy axis goes in-plane, as expected. However, the
anisotropy of Co strikingly goes from in-plane to out-of-plane as the Al thickness exceeds tAl =1.6 nm (Fig.1a). At such
thicknesses, transmission electron microscopy (TEM) and other characterization tools suggest that the Co|Al interface is
uniformly unoxidized. The strength of PMA further increases with Al thickness and the effective anisotropy field saturates to
1.8 T, a much higher value than the anisotropy of Pt|Co|AlOx. Additionally, we also have quantified the DMI using Brillouin
Light Spectroscopy (BLS). The evolution of effective DMI (De f f ) as a function of Al thickness is displayed in (Fig.1b). The
DMI follows 1/tAl dependence in the measured range before saturating at tAl =2 nm.

As Al is a light element with negligible spin-orbital coupling, its strong impact on interfacial mechanisms suggests the
modification in the density of states at the Co|Al interface. We have recorded XAS spectra to probe the electronic states of
the Co d-band. As shown in Fig. 2, the XAS spectra show clear and strong Al thickness dependence of their intensity. The L3
absorption peak intensity decreases with Al thickness i.e. with increasing metallic Al content. The variation in XAS intensity
and shape reflects the change in electron population at the Fermi level or the density of states of Co due to the metallic Al
interface for thicker Al. Our results demonstrate the orbital hybridization and electronic charge redistribution at the Co|Al
interface and establish a correlation with the DMI. As a consequence, the DMI decreases monotonically with the Al thickness
and saturates for 2 nm thick Al. Additionally, the charge-to-spin conversion mechanisms and resultant spin-orbit torques in
this system will be discussed in detail.
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Figure 1: (a) Al layer thickness dependence of out-of-plane magnetic anisotropy in Ta(5)|Pt(8)|Co(0.9)|Al(tAl) series
of samples. Inset shows the normalized anomalous Hall effect loops as a function of out-of-plane magnetic field for four
different Al thicknesses. (b) The effective DMI constant as a function of Al thickness.
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Figure 2: Average XAS spectra in Ta(5)|Pt(8)|Co(0.9)|Al(tAl) series of samples for various Al thicknesses. The change in
the XAS intensity indicates the distinct density of states with metallic Al and AlOx interfaces. .
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Magnetic skyrmions are topologically protected chiral spin textures evidenced in materials characterized by broken in-
version symmetry. Their interests relies on the possibility to develop innovating spintronic devices and applications [1], as
they can be moved in nanotracks using electrical currents, which opens perspectives for information processing, and alter-
natives to traditional CMOS electronics [2]. In the perspective to provide an efficient integration in spintronic applications,
it is necessary to investigate their dynamics. A powerful tool we have to manipulate the magnetic textures whenever we
are dealing with a system characterized by a large spin-orbit coupling at the interface, is the spin-orbit torque (SOT) [3].

Among the magnetic materials, synthetic antiferromagnets (SAFs) are quite promising for the development of skyrmions.
As a matter of fact, thanks to the antiferromagnetic coupling of the two layers, it is possible to stabilize a coupled pair of
skyrmions that can be moved when excited by spin-orbit torque [4]. Due to their topological properties, their motion is
affected by a gyroptropic force, which deflects the skyrmion away from the current induced applied force. Such gyrotropic
deflection vanishes by exploiting the antiferromagnetic coupling in SAFs: the skyrmions in the two layers are characterized
by opposite topological numbers, thus the gyrotropic forces point towards opposite directions compensating each other.
The coupled skyrmions therefore behave like a solitonic particle, whose motion follows the current direction [4, 5]. In Co-
based multilayers, where the antiferromagnetic coupling is guaranteed by a Pt/Ir spacer, it was possible to observe coupled
skyrmions following linear trajectories and reaching velocities up to 250 m/s [6]. These results need a quantitative under-
standing and an analysis of the current induced torque is required. Thus, this study proposes to characterize the torque
on each of the two magnetic layer, that compose the SAF of interest, independently by exploiting harmonic Hall voltage
measurements [7, 8].

The original SAF of interest is composed of Ta(3)/Pt(5.4)/Co(1)/Ir(0.8)/Pt(0.7)/Co(1)/Ta(4.5), where the thicknesses
are given in nm. In such a stack, the Pt/Co interfaces are characterized by a large spin-orbit coupling which provides a
large DMI, necessary to stabilize skyrmions. In addition, the thick Pt and Ta layers allow a charge to spin current conversion
leading to a polarized spin accumulation at the interface, through the Rashba or spin Hall effects (SHE), which induces a
torque on the adjacent magnetic layer. More in detail, this torque can be described as an additional induced effective field
∆H⃗, which can be split into two terms, namely the damping-like term ∆HDL and the field-like one ∆HF L . The former is
proportional to the vector product m̂× p̂, where m̂ is the magnetization direction of the magnetic layer and p̂ is the spin
direction of the electron entering the magnetic layer through Rashba or SHE, whereas the latter is simply proportional to
p̂. The Ir/Pt spacer, instead, guarantees the antiferromagnetic coupling of the two Co layers as its thickness is thin enough
enough to allow the RKKY interaction, to be tuned for an antiferromagnetic coupling (0.5 T). To perform the analysis on
the SOTs independently on each layer, two sets of samples were growth by MBE, namely the bottom layer and top layer.
The former reproduces the SAF composition without the top Co layer, whereas in the latter, the bottom Co layer is missing.
To improve the magnetic properties of the top Co layer that are degraded at the Co/Ta interface, we also test Co/X/Ta
interfaces with X=Ir, Cu and Al.

The magnitude of the SOT investigated uses the second harmonic generation, using the anomalous Hall effect. The
sample is patterned into Hall crosses where a low frequency (ω ≈ 10 Hz) current is applied. The Hall voltage, related to
the out-of-plane component, contains several frequencies. The ω component contains information on the static properties
(namely anisotropy field), and the 2ω component contains information on the SOT. We observe an efficient SOT torque for
both layers, with identical signs, as shown in Fig. 1. Considering that at the bottom (top) layer the Pt (Ta) SOT-source layer
is placed below (on top of) the Co, this evidenced that the charge to spin conversion in Pt and Ta have opposite signs. From
this analysis it was possible to evaluate the efficiency of the charge to spin current conversion θSH , which was found to be
equal to 0.27 for the two cases discussed (see Fig. 1(c)).
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Figure 1: In (a) the hysteresis loop for the top layer Co/Ir/Ta acquired from the first harmonic signal of the Hall Voltage
measurements: in this case it can be noted a magnetic anisotropy field of 0.66 T. In (b) the second harmonic signal in
the damping-like configuration performed again on the Co/Ir/Ta top layer. In (c) the behaviour of the damping-like field
∆HDL for the Co/Ir/Ta top layer, in orange, and the bottom layer, in blue, with respect to the current density: assuming that
the current induced field arise from the spin Hall effect, it was possible to evaluate the spin Hall angle θSH , describing the
efficiency of the charge to spin current conversion. In both the cases showed, it was obtained θSH = 0.27.
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The concern of high power consumption for computing is pushing the embedded memory technology to go non-volatile
data storage. Hence, magnetoresistive RAM (MRAM) is currently being actively investigated owing to its less static power
consumption, unparalleled speed, scalability and endurance compared to conventional volatile memories (SRAM and
DRAM). It uses spin degree of freedom along with charge of electrons to read and write a memory device which is pri-
marily based on magnetic tunnel junction (MTJ). Reading mechanism for an MTJ is operated by using the tunnel magneto-
resistance (TMR) effect. Spin transfer torque MRAM and toggle MRAM are already under production whereas spin orbit
torque (SOT) MRAM is under research stage along with other candidates. SOT-MRAM has an advantage over others with
respect to its faster and high endurance writing methods [1]. The SOT writing mechanism is mediated by spin hall effect
and Rashba-Edelstein effect creating two torques: dampinglike and fieldlike.

So far most of the research on SOT-MRAM is concentrated at room temperature whereas the low temperature regime is
relatively unexplored which could open up its capabilities for cryogenic computing and data storage [2]. We are currently
investigating switching of SOT-MTJ, using W as SOT material [1], at cryogenic temperatures. Firstly, we will report on the
RH characteristics of SOT-MTJ as a function of temperature, down to 10K, for different critical dimensions (50 to 100nm MTJ
diameter). We already observe almost linear dependence of coercivity and TMR variations with lowering of temperature as
shown in Fig 1(centre), which is reported by other studies [3] as well.

Figure 1: Left: Resistance vs perpendicular field measurement of a 80nm SOT-MTJ device at 77K. Centre: Coercivity and
TMR characterisation of a 80nm SOT-MTJ device as a function of low temperature. Right: Electrical switching of a 60nm
SOT-MTJ device at 77K using pulses of frequency 1ns and 300ps.

In second part, we will present temperature dependence of switching parameters like critical switching current, write
error rate and spin hall angle obtained from SOT-switching probability measurements [4]. We show in Fig. 1(right) prelim-
inary measurements of SOT-induced switching at 77K temperature for a 60nm device at 1ns and 300ps.

This study will allow establishing a benchmark of SOT-MTJ properties and figures of merit against other technologies
envisioned for cryogenic devices, and to identify pathway toward using SOT physics and devices for low temperature ap-
plications.
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There is considerable interest in electrically controlling nano-magnets (spintronics) in order to develop non-volatile
magnetic memories (MRAM) [1]. Indeed, the microelectronics industry is facing major challenges related to the volatil-
ity of CMOS cache memory elements (usually SRAM and eDRAM), and MRAMs are among the most credible low power
and fast enough candidates to compete with SRAM and replace them at cache level. Most advanced MRAM devices are
magnetic tunnel junctions (MTJ) that are operated by spin transfer torque (STT) effect for the write and tunnel magneto-
resistance (TMR) effect for the read. Nowadays, commercial products using this technology for micro-controller and eFlash
replacement start appearing on market. Meanwhile, Spin-orbit torques (SOT) have emerged as a credible next-generation
mechanism for MRAM technology that allows for faster and more efficient magnetization writing [1]. SOT are typically
generated in heavy metal non-magnetic materials such as W, Pt or Ta [1]. It relies on spin-orbit coupling effects for con-
verting charge currents into spin currents, which are then transferred to an adjacent ferromagnetic layer, e.g. the free layer
(FL) of an MTJ (Fig.1a). The proof of concept of SOT-MRAM was rapidly confirmed [2] and is now in the phase of R&D
industrial developments [3].

While some important roadblocks have been overcome, such as the realization of a deterministic switching without
magnetic field, and the development materials with giant SOT efficiency [1], other important technology requirements that
must be met are poorly addressed so far: the device manufacturing yield must be close to 100%, and the write error rate has
to be less than 1x106. Yield is challenging to achieve due to the SOT-MRAM fabrication approach: the typical integration
of SOT-MRAM is based on a particular configuration of the MTJ stack configuration called "top-pinned". The storage layer
FL is located at the bottom of the MTJ (Fig.1a), in contact with the SOT layer. The etching of the MTJ pillar must therefore
precisely stop on the SOT metal, which penalizes the manufacturing yield by nano-shorts due to metal re-deposition on the
tunnel barrier sidewalls, as well as the density. On the other hand, write error rate (WER) is poorly reported, but shown to
be impacted by SOT field like term [4].

To address these issues, we propose engineering the SOT/FL interface as shown in Fig.1b. The addition of a spacer layer
between the FL and the SOT track can provide several advantages in the fabrication process, by improving the fabrication
yield, expanding the margin of error during the etching of the pillar, but also enabling a control of ΓF L/ΓAD torque ratio.
This would path the way towards the integration of giant SOT efficiency material such as topological insulators (TI), whose
implementation in real devices in hindered by the strong intermixing with the FL. In addition, the spacer layer could
modulate the field-like component of the SOT, that is responsible for writing errors, optimizing the performances of the
devices.

To screen the suitable materials for the spacer layer, we implemented an automated measurement method on prober.
It is based on the loop shift method (HLS) [5] that allows to characterize the SOT efficiency components (damping-like
ξDL), and the Dzyaloshinskii-Moriya interaction (DMI) effective field in hall bars (HB) (Fig.1c): Interfacial DMI is known
to stabilize homochiral Néel domain wall (DW), and the interaction between the SOT and the DW moments give rise to
an effective field along z (axis reference in Fig.1c) that translate into a shift of the hysteresis loop, and is proportional to
the injected current and the SOT efficiency Hz

e f f ∝ ξJe. Measuring the loop shift as a function of the current bias and
in-plane field Hx , is possible to extract ξDL as the saturation value i.e. when Hx overcome HDM I (Fig.2a). We first verified
the accuracy of the estimation of HDM I via current-induced DW motion: plotting the DW velocity as function of the in-plane
field, when Bx = HDM I the DW is reoriented into Bloch-type, and the DL torque acting on the DW moment will be zero,
giving zero velocity (Fig.2b).

In this poster, we will present the implementation of the HLS method on prober, and we will show that it is possible
to extend it to the quantification of field-like term ξF L . These results will be compared to to alternative measurement
techniques such as second harmonic method [6] and domain wall motion studies.

These studies will open the possibility to efficiently study promising solutions for high-efficiency SOT-MRAM.
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Figure 1: a) Top-pinned SOT-MRAM MTJ, b) proposed layout with addition of spacer layer X, c) optical microscope image
of fabricated W/CoFeB/MgO/CoFeB/Ta HB with dot etched at the cross-point. The etching is stopped at the SOT track, and
the dot is encapsulated in silicon nitrite to prevent oxidation.

Figure 2: a) Efficiency as a function of the applied in-plane field, for a sample W(2.55)/CoFeB(1)/MgO(1.25)/
/CoFeB(0.5)/Ta(3) patterned into HB with dot of diameter 4.5 µm. b) Domain wall speed for down-to-up and up-to-
down transitions as function of the applied in-plane field for a sample W(2.9)/CoFeB(1)/ /MgO(1.25)/CoFeB(0.5)/Ta(3).
Layers thickness is expressed in nm between parentheses.
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An electrical current that flows across individual atoms or molecules can generate exotic quantum-based behavior, from
memristive effects to Coulomb blockade [1] and the promotion of quantum excited states [2]. These fundamental effects
typically appear one at a time in model junctions built using atomic tip or lateral techniques. So far, however, a viable
industrial pathway for such devices has been lacking.

We first present experiments on vertical magnetic molecular nanojunctions [3]. The electrically excited quantum state of
the spin chain formed by Co phthalocyanine molecules coupled to a ferromagnetic electrode constitutes a distinct magnetic
unit endowed with a coercive field. This generates a specific steady-state magnetoresistance trace that is tied to the spin-flip
conductance channel, and is opposite in sign to the ground state magnetoresistance term, as expected from spin excitation
transition rules. The experimental 5.9 meV thermal energy barrier between the ground and excited spin states is confirmed
by density functional theory, in line with macrospin phenomenological modeling of magnetotransport results.

We have also studied ‘industrializable’ magnetic tunnel junctions with a MgO barrier containing C atoms [4]. We demon-
strate that the effective nanotransport path [5] due to the resulting localized paramagnetic [6] states involves individual
C atoms. Their discrete energy levels promote Coulomb blockade effects that can be reproducibly shifted in energy by
charging events on neighboring C atoms. The tunnel coupling between these transport and environmental carbon atoms
promotes quantum interference effects. Spin-polarized transport induces spin accumulation that lifts the spin degeneracy
of the unpaired C electron in MgO. This leads to a voltage shift in Coulomb peaks and quantum interference effects between
the datasets in the MTJ’s P and AP magnetic states. Spin accumulation also accounts for the huge enhancement of the
spintronic performance when a Coulomb peak is memristively controlled.
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Figure 1: Memristive Coulomb blockade at the atomic level. (a) IV and (b) differential conductance dI/dV data at
T = 10 K on junction G10. The E+ and E− writing events cause a shift ∆W = 73 mV in the otherwise constant energy gap
∆CG = 310 mV between conductance peaks. Transport noise due to interference with an environmental atom are shown
using semi-transparent datapoints (c-f) dI/dV data upon sweeping bias to test the interplay between the presence of the
Coulomb blockade peak and the writing events E− and E+. The black data labeled 1 code for the initial branch state of the
junction, then the sweep direction is inverted and the return branch is represented in red and labeled 2. [4]
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The manipulation of magnetic materials without the use of magnetic fields is of great fundamental and technical in-
terest. The discovery of spin-transfer torque (STT) [1, 2] allowed us to control the magnetization direction electrically in
magnetic devices within nanoseconds, which paved the way for non-volatile applications such as spin-transfer-torque mag-
netoresistive random access memory. However, the threshold current (or energy consumption) for magnetization reversal
rapidly increases below ten picoseconds [3]. This is because spin-angular-momentum-transfer has to overcome the energy
barrier for magnetization reversal while the pulse current is applied. Current-induced STT switching below a few hundred
picoseconds while maintaining enough retention property is still challenging as long as the magnitude of magnetization
remains the same. Ultra-short optical pulses can directly manipulate the magnitude of magnetization at sub-picoseconds
time scales [4]. When ultrafast demagnetization occurs, angular momentum conservation implies that the angular momen-
tum will either dissipate locally into the lattice [5–7] or will be transferred in the form of a spin current to another part
of the sample [8–11]. In a multilayered structure such as spin valves, spin currents generated by laser excitation result in
different demagnetization times within less than a picosecond depending on its magnetic configuration: demagnetization
is faster for an initially antiparallel (AP) configuration [8]. However, magnetization reversal in ferromagnetic spin valves
by a single femtosecond laser pulse has not been achieved. Magnetization reversal starting from the AP state can still be
expected as an extension of the previous study [8]. In contrast, it has yet to be discovered if it is theoretically feasible for
ultrafast magnetization reversal starting from parallel (P) configuration.

Here we demonstrate an optically induced sub-picosecond magnetization reversal in archetypical rare-earth-free spin
valves of [Pt/Co]/Cu/[Co/Pt] that are used for current-induced STT switching [12, 13]. Surprisingly, we observe magneti-
zation reversal starting from the P state, which is unprecedented and counterintuitive in ultrafast magnetism [13]. We also
reveal that the mechanism behind this phenomenon could be understood in the analogy of current-induced STT switching
[13, 14].
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Dans sa plus simple expression une jonction tunnel magnétique est composée de deux couches ferromagnétiques (les
électrodes) séparées par une fine couche isolante : la barrière tunnel. Le courant tunnel circulant perpendiculairement
au plan des couches mesuré après application d’une différence de potentiel entre les deux électrodes ferromagnétiques est
fortement dépend de l’orientation relative des aimantations des électrodes : c’est l’effet tunnel polarisé en spin.

Depuis plusieurs années nous nous intéressons à l’impact de la présence d’états électroniques localisés dans la bande
interdite de l’isolant constituant la barrière. Nous avons pu montrer par exemple l’impact qu’ont les lacunes d’oxygène sur
le transport tunnel polarisé en spin [1].

Dans ce poster nous présenterons nos plus récent résultats concernant le transport tunnel polarisé en spin au sein de
jonctions tunnel dont la barrière est constituée une couche de 2.5nm de MgO dopée en carbone. En plus des caractéris-
tiques usuellement utilisées pour qualifier les jonctions tunnels magnétiques des mesures d’IETS pour inelastic tunneling
spectroscopy, (voir dérivées secondes sur la figure) seront utilisées pour compléter notre analyse.

Figure 1: a. Conductances et b. IETSs mesurées d’une JTM dont la barrière est dopée carbone dans les configugrations
parallèle (P) et antiprallèle (AP) des aimantations à différentes températures.

[1] F. Schleicher et al., Nat. Com. 5, 4547 (2014)
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We investigated the spin-orbit torque (SOT) switching of the single CoTb layer with or without the heavy metals (Pt and
W) in different thickness to identify the self-torque effects generated in the CoTb layer. The generation of self-torque heavily
depends on the thickness of CoTb. The SOT switching was not observed for a single CoTb layer with 3 nm in thickness,
suggesting self-torque may be quite weak in a very thin film. A deterministic SOT switching can be obtained for a single 9 nm
CoTb layer. The amplitude of the self-torque generated in CoTb is comparable to the Pt/Co case with the same switching
polarity as the Pt/Co one. When 3 nm CoTb was deposited on Pt or W underlayer, the Jc is smaller in W/CoTb than that of
Pt/CoTb, which can be attributable to a high spin Hall angle of W and negligible self-torque of CoTb. On the other hand,
when the CoTb is increased to 9 nm, the Jc of W/CoTb is significantly increased and becomes higher than that of Pt/CoTb.
The enhanced Jc of W/CoTb may result from the opposite sign of spin orbit torque generated in W and CoTb. Since the
self-torque generated in 9 nm CoTb becomes substantial, the competition of spin orbit torque between W and CoTb occurs,
leading to a high Jc . We define the switching efficiency

η=

q
2H2

k −H2
x

Jc
×Ms t (1)

based on the macrospin model [1], in which Hk and Hx are anisotropy field and applied magnetic field along the x
direction. The variations of η with the layer structure is shown in Table 2. The addition of SOT from Pt and self-torque from
CoTb leads to enhanced switching efficiency when the thickness of CoTb is increased. On the other hand, the competition
of SOT from W and self-torque in TbCo of W/CoTb devices was revealed by increasing the thickness of CoTb. We further
confirm this interplay by reversing the stack order, that is, CoTb/W, in which the efficiency is substantially enhanced.

Figure 1: SOT switching curves for (a) W/CoTb 3 nm (b) W/CoTb 9 nm, (c) CoTb 9 nm/W, (d) Pt/CoTb 3 nm, and (e)
Pt/CoTb 9 nm.
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Figure 2: SOT switching efficiency for various layer structures.
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Nanometer-sized constrictions in ferromagnetic nanostructures are of great interest due to their unique properties and
potential applications in nanomagnetism and spintronics [1]. By confining magnetic domains to very small regions, these
structures allow to explore the fundamental properties of magnetism and even to control magnetic configurations at the
atomic scale which can be used for developing new technologies.

Our study focuses on the magnetization reversal within an atomic constriction that separates magnetic nanostructures
of the same material in the shape of mounds, discs and Wulff polyhedrons at the nanoscale (see Fig. 1). We used atomistic
magnetic simulations for modeling our systems. Our calculations show that the domain wall is almost entirely confined
within the atomic-sized constriction in agreement with conclusions drawn from an analytical model [2].

We also found that the domain wall extension is primarily determined by the geometric properties of the islands-
constriction system rather than intrinsic material properties like magnetocrystalline anisotropy, exchange coupling, or ma-
terial saturation magnetization.

Figure 1: Atomic magnetic moment orientations for two nanoscale dots connected by an atomic constriction. On the left-
hand side, dots are shaped like mounds as could be the result of the Ehrlich-Schwoebel effect on the growth [3], whereas on
right-hand side, dot shape is the result of a simple Wulff construction. Both illustrations corresponds to granular ultrathin
films with a low scale roughness as observed for many metal/oxide or metal/semiconductor surfaces. Dots magnetization
is constrained 180° apart by pining the moments of few atoms on the outer edges but almost all the magnetization rotation
take place inside the constriction.

We demonstrate that magnetic interactions between nanometric islands connected by an atomic bridge can be approxi-
mated by two macrospins coupled by an effective Heisenberg exchange interaction for which we assessed the strength as a
function of the geometric parameters of the atomic constriction.

This result allowed us to successfully model the magnetic properties of large ferromagnetic island assemblies whose
individual magnetic properties such as magnetization and shape anisotropy can be specified.

A key aspect to the correct treatment of such systems is the ability to accurately take into account the effect of the
demagnetizing field on these heterogeneous layers. We specifically designed a code to efficiently calculate dynamical prop-
erties of these systems. Our study revealed that the low-scale roughness of ultra-thin epitaxial films strongly modify the
magnetization dynamic in a sub-micrometer systems. These findings are of significant importance for the future design and
development of high-performance devices based on magnetic systems at the nanoscale.
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State-of-the-art fault current limiters are based on active components or inductors, and are large and expensive devices.
Here, we propose a new passive and miniaturized magnetoresistance-based system [1] strongly reducing device size and
cost. The extraordinary magnetoresistance (EMR) effect was chosen as it exhibits the largest resistance ratio among the
known magnetoresistive (MR) phenomena, reaching values up to 107 % [2].

Many works have studied EMR in high-mobility materials (like semiconductors [3], graphene [4] and heterostructures
[5]) mainly for magnetic field sensing [2, 5]. For current limiter applications, only 2-terminal geometries are applicable.
Through 2D finite element simulations (COMSOL), we have studied several geometry and material parameter combinations
to understand if and how EMR-based current limiters can be realized. For instance, we have designed different planar
shapes and sizes for the electrodes (such as van der Pauw disk [3], multibranch geometry [2], bar type geometry [5] or
stripes). For 2-terminal systems, our simulations show that the EMR ratio reaches its largest value in simple sandwich
designs, that maximize the resistance variation between current paths where the electrons cross the metal-semiconductor
interface tangentially and normally, respectively. Comparing the EMR ratio values reported in the literature [2, 3, 5] with
those resulting from our simulations, we suppose that the higher EMR values displayed by 4-terminal systems arise from a
combination of Hall and EMR effects. 2-terminal systems, where the Hall effect is absent, exhibit instead lower EMR ratios.

Simulations show that EMR saturates with lateral extension of such 2-terminal systems. This EMR saturation varies
as a function of electron mobility and out-of-plane magnetic field according to the following empirical relation: EMR =
19.1(µB)2. This is in agreement with previous works [3]. It shows that it is possible to reach high EMR values of about
2000 % at a magnetic field of 1 T when the semiconductor materials mobility is around 105 cm2/(Vs). Such values are
very promising for current limiter components. This behavior can also be found with a simple 2-channel model which
describes 2-terminal systems, where electrons follow the least resistive path. It fits to the simulation data and gives EMR =
8480l/(0.29+l), with l being the lateral extension of our system.

In summary, this work investigates a new passive and compact current limiter device concept based on the EMR effect.
With proper mobility and good interfaces, an EMR ratio as high as 2000% can be achieved in a 2-terminal system, which
could make this technology suitable to replace state-of-the-art fault current limiter components
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The search for low power consumption electronic devices is one of the main motivation for spintronics. Indeed, the
spins attached to the charge carriers allow a direct manipulation of the magnetization states. Accordingly, the power used
is that of the spin degrees-of-freedom, and not directly the Joule power. Yet the transport of the spin attached to the charge
carriers follows the thermodynamic rules that determines Joule dissipation. In the case of Hall effect (HE), anomalous Hall
effect (AHE), or spin-Hall effect (SHE), the Joule dissipation is minimized due to the presence of an effective magnetic field
that breaks the time-invariance symmetry at the microscopic scale[1] . The transport of electric carriers is then described
by a typical “Hall-like" term that appears in the Ohm’s law[2,3,4,5].

It is well-known that the force associated with a magnetic field - typically the Lorentz force for the HE - cannot pro-
duce mechanical work in vacuum. More generally, due to the Onsager reciprocity relations, it is often assumed that the
Hall-current produced by Hall-like effects is dissipationless [6,7,8]. But it is not necessarily the case: typically, the power
associated with the Hall voltage in a perfect Hall bar is indeed null, but the power associated with a perfect Corbino disk
dissipates [4,5]. The dissipation of the anomalous Hall current is the object of the present study.

GdCo
Au Au

Au

Au

V

V

A

VRl
-1,0 -0,5 0,0 0,5 1,0

0,0

0,1

0,2

0,3

0,4

Po
w

er
 (n

W
)

Applied field (T)

Figure 1: Left: Photo of the device. Center: Sketch of the Hall bar with the load circuit. Right: Power P = Vx y Ix y measured
as a function of the perpendicular magnetic field for different values of the load resistance.

We have measured the dissipation of the anomalous-Hall current injected into a lateral load circuit. The anomalous-Hall
current is generated by a Co75Gd25 ferrimagnetic Hall bar and injected into lateral contacts lithographied at the two edges
(see Figure 1). The current, the voltage and the power injected in the lateral circuit are studied as a function of the mag-
netization states, the load resistance, and the temperature. The maximum power consumption is of the order of the square
of anomalous-Hall angle. A sharp maximum is observed, which corresponds to the condition of resistance matching. The
observations are in agreement with recent predictions based on a non-equilibrium variational approach [2].

Indeed, the predicted expression of the Power efficiency is given by the expression [2] :

P(Rl)
P0

= θ 2
AH

ρAH
αRl�

1+ ρAH
αRl

�2 (1)

where P0 = Vx x Ix x = 80µW is the constant input power injected into the GdCo layer and ρAH = 1.3 10−2 µΩ.m.T−1 is the
anomalous Hall conductivity per Tesla deduced from the anomalous Hall voltage V 0

x y , the longitudinal current Ix x and the
geometrical parameters of the Hall bar defined in Fig.1(left). The anomalous Hall angle per Tesla of the Co75Gd25 layer is
θAH = 6 10−3 T−1. The parameter α is an unknown geometrical parameter that allows the known load resistance Rl to be
converted into the load conductivity. The parameter α is deduced from an independent fit.

The result of the study can be summarized in the figure below that represents the power efficiency injected in the load
circuit as a function of the load resistance Rl :

Note the sharp maximum for α = 1: this is the expression of the “maximum power transfer theorem” (resistance
matching). The maximum transfer is very small: of the order of θ 2

AH ∼ 10−5. The excellent correspondance between the
theoretical predictions and the experimental verification is a strong indication of the validity of the variational method
developed in reference [2]. Beyond, these results suggest the validity of the description of the spin-Hall effect proposed in
reference [3], for which - in contrast to the present study - the power dissipation due to the spin degrees-of-freedom plays
a major role. The application to Spin-Orbit Torque (or charge-to-spin current conversion devices) will be discussed.
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Figure 2: Power-efficiency of the transducer as a function of the load resistance. The squares are measured points and the
line is calculated form Eq.(1) (reference [2])
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Spin-orbitronics, which is based on the use of orbital angular momentum as an information carrier, has gained significant
attention in the recent past. In the structures which lack inversion symmetry, a formation of orbital angular momentum
(OAM) in the bloch wave functions which is independent of spin orbit coupling (SOC) has been predicted and is considered
to be a more generic effect implying that the orbital moment of the electron is the main driving force behind the Rashba
effect rather than its spin [1]. This OAM mediated Rashba effect is called Orbital Rashba effect (ORE), and has been studied
in different systems like metal surface [2], oxide surfaces [3], two dimensional (2D) materials[4].

In this work, we aim at exploring and predicting, this phenomena at various interfaces, via modelling tools which
includes Density Functional Theory (DFT), Wannier functions, tight-binding based electronic structure calculations as well
as transport within the Non-equilibrium Green functions (NEGF) formalism, using different codes (Quantum ESPRESSO
[5], WANNIER90[6], Quantum ATK [7]). We have modelled a number of surfaces like oxidized Cu films, GaAs-Fe surface,
2D materials such as MoS2 Nanoribbons and Lateral heterostructures (LH) composed of NbS2 and WSe2 shown in Figure
1. In these materials due to significant hybridization at the surface/interface there is an emergence of prominent ORE. We
have calculated the chiral orbital texture in the momentum space in these materials. Our results will encourage further
experimental investigations.

Figure 1: Shows 2D NbS2/WSe2 Lateral Heterostructure: a) structre, b) transmission profile, c) bandstrcuture, where the
color indicates the OAM expectation value of each state projected onto the surface Nb atom.
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Spinel ferrites are attractive for a large variety of applications, in particular in the fields of electronics and spintronics [1],
to develop memories based on extrinsic multiferroics [2] or resistive-switching mechanisms [3]. In addition to their good
magnetic properties, a noticeable interest in ferrites comes from their chemical composition which includes two very abun-
dant and non-toxic elements, i.e. iron and oxygen. To improve the performances of ferrite-based devices, a good control of
their electronic and magnetic properties is nonetheless mandatory, which can only be reached with a good understanding
of the intricate coupling between their atomic structure and these properties.

NiFe2O4 is a versatile ferrimagnetic insulator, with a high Curie temperature. We performed first-principles calculations
to investigate how its electronic and magnetic properties can vary in (001) thin films, due to the increased contribution
of surfaces and/or interfaces with a ferroelectric material. We will discuss about the possible electronic reconstructions
which could arise because of the polar character of this oxide. We will also see how the stability of structural defects can
be modified in thin films, as their occurrence can drastically affect the magnetic and conductive properties [4–6].
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Superconductivity and magnetism are often seen as antagonistic effects, and joining them can seem counter intuitive
at first. However spin-pumping in s-wave superconductors has shown to be a successful method to study the coexistence
between non-equilibrium spin polarized currents and the superconducting condensate [1].

In the present work, we use wideband ferromagnetic resonance (FMR) to study spin-pumping in epitaxial bilayers of
La0.7Sr0.3MnO3 (LSMO), a half metal, and YBa2Cu3O7-d (YBCO), a d-wave superconductor. The interface between these
layers depends on the crystallographic orientation of the NdGaO3 (NGO) substrates : (110)0 and (100)0 (Fig. 1a-b), subse-
quently giving access to different pumping channels for the spin currents.

We evaluated the spin conductance at the LSMO/YBCO interface by analyzing the magnetization dynamics in LSMO. We
found that the Gilbert damping shows an upturn followed by a drop as the heterostructures are cooled across the normal-
superconducting transition when the ab-plane of the YBCO is parallel to the interface (grown on NGO (110)0) (Fig. 1c), and
a drop followed by an upturn when the ab-plane is tilted 45° with respect to the interface (grown on NGO (100)0) (Fig. 1d).
The latter case is reminiscent to the phenomena we recently reported for d-wave superconductors, where the opening of the
superconducting gap reduces the spin injection efficiency and leads to a drop in the damping, followed by an upturn due to
spin resolved Andreev bound states [2]. However, the upturn observed in the damping for samples grown on NGO (110)0
reflects an increment in the spin injection efficiency which could be ascribed to long range spin pumping mediated by spin
triplets. This possibility is supported by the generation of spin triplets in c-axis oriented LSMO/YBCO interfaces [3]. These
findings put in evidence the anisotropic character of the superconducting gap in YBCO and the potential of this interface in
the field of superconducting spintronics.
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Figure 1: Scheme of the crystalline structure of the LSMO/YBCO interface for (a) NGO (110) and (b) NGO (100). (c-d)
show the Damping (left axis in black) and Resistance (right axis in blue) vs Temperature for (c) YBCO/LSMO//NGO(110)
and (d) YBCO/LSMO//NGO(100).
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The MagnetoElectic Spin-Orbit (MESO) logic has emerged as one of the best candidates to complement standard CMOS
transistors technology [1]. It enables information to be written, stored and read electrically in a non-volatile way, leading to
low power consumption for next-generation spintronic logic devices [2]. In a MESO device, two logic states are determined
by the magnetization direction of a nanostructured ferromagnetic layer (green layer in Fig. 1a). The MESO device is
composed of two modules: one to write the logic state (ME writing module) by controlling the magnetization direction
using the MagnetoElectric coupling and the other to read it (SO reading module) through spin-to-charge conversion in a
material with high spin-orbit coupling [3, 4], also called spin-orbit material (SOM). In this work, we focus on the SO module,
in which the magnetic state readout is possible using the inverse spin Hall effect (iSHE). More precisely, a spin polarized
current is created by flowing a charge current through the ferromagnet. Due to the iSHE, this spin polarized current is
converted to a transverse voltage ViSHE that will carry the information about the magnetization in the ferromagnet (see
Fig. 1a,b). The voltage difference between the two magnetization direction is called the output signal, ∆ViSHE , or ∆RiSHE
if normalized to the injected current (see Fig. 1c). Reaching a large output signal ∆RiSHE is a requirement for the MESO
concept to work, as it will allow to switch the next writing module of the MESO device, opening the way to highly energy
efficient devices.

Figure 1: (a) Sketch of the T-shape reading module of the MESO device. A current flows along the bottom Ta electrode,
gets spin-polarized by passing through the CoFeB layer, and is converted back into a transverse charge current, whose sign
depends on the magnetization direction of the nanostructured CoFeB (white arrow). (b) Magnetic state readout using the
iSHE: Transverse resistance from ViSHE as a function of the magnetic field. The two magnetization directions are indicated,
and the red color (resp. blue) corresponds to the forward field sweep (resp. backward).

Here, we present two techniques to improve the output signal of the SO module, for which we have designed, patterned
and fabricated test devices in a T-shape geometry (see Fig. 1a,b). On the one hand, we are exploring SOM with high
resistivity and spin-orbit coupling, such as Ta, Bi or BiSb, expected to enhance the spin-to-charge conversion efficiency [5].
However, increasing the resistivity of the SOM brings additional problems such as electrical and spin conductivity mismatch,
reducing the spin injection efficiency [6]. Thus, on the other hand, we explore the addition of a crystalline MgO tunnel
barrier between the ferromagnet and the SOM (purple layer in Fig. 1a,b), solving both of these issues at the same time and
improving the spin injection [6]. Our first working devices allow a clear readout of the magnetic state, as shown in Fig.
1c, which we expect to be highly improved by our ongoing optimization of the material properties, device geometry and
fabrication process.
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In condensed matter physics, Hall effects correspond to the appearance of non-diagonal terms in the conductivity tensor.
From the ordinary Hall effect to the quantum anomalous Hall effect, the discoveries of the various Hall effects have always
been the source of profound insight in the physics of condensed matter transport. A new member of the Hall family, recently
predicted theoretically [1] and measured [2], is the Nonlinear Anomalous Hall Effect (NLAHE).

The main characteristic of this new effect is that, unlike the ordinary Hall effect or the anomalous Hall effect, the
relationship between the applied current and the transverse electric field is nonlinear. It does not require any symmetry
breaking by a magnetic field, like for the ordinary Hall effect, or by a magnetization, like in the case of the anomalous Hall
effect. In other words, the NLAHE does not require -and must not have- time reversal symmetry breaking. Instead, a spatial
symmetry breaking is required, which can be found in non-centro-symmetric systems.

Ferroelectric materials, which possess a remanant electric polarization, are a particular class of non-centro-symmetric
materials. The sign of NLAHE has been predicted [3] to depend on the sign of the ferroelectric polarization, however this
non-volatile Ferroelectric control of the NLAHE (FENLHE) has not been demonstrated clearly yet.

Germanium Telluride (GeTe) is a room temperature semi-conducting ferroelectric, whose non-centro-symmetry should
lead to a substantial NLAHE. High quality GeTe [111] stacks were grown by molecular beam epitaxy. We then patterned
Hall bars by electronic beam lithography, and measured their transport properties.

The nonlinearity can be probed using lock-in techniques, as it leads to the appearance of second harmonic signals. We
show that we have in-plane NLAHE in GeTe [111] (see Fig. 1). We also used an Atomic Force Microscopy (AFM) setup with
a conductive tip to apply electric fields locally. We demonstrate the remnant control of the sign of the NLAHE (see Fig. 2),
after applying electrical fields with a conductive AFM tip. This result is to our knowledge the first demonstration of the
non-volatile control of the NLAHE by the ferroelectric polarization.
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Figure 1: In-plane measurements of the NLAHE in two opposite directions. In absence of any non-linearity in the Hall
contributions, the second harmonic V 2ω

⊥ signal is expected to be 0. The presence of a non-zero signal indicates the presence
of a non-linear contribution. The signal varies, as expected for the NLAHE, quadratically with the applied longitudinal field.
The change of sign of the signal for a 180° rotation of the setup is the guarantee that the signal is not due to heating effects,
which could also be responsible for a non-linear contribution.

Figure 2: NLAHE measurements after having applied different electrical fields with the conductive tip of an AFM. The
colored labels indicate the order of the measurement and the amplitude of the voltage applied with the tip before the
measurement.
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Epitaxial thin film of Mn5Si3 [1, 2] is a candidate to the recently predicted class of magnetic materials called ‘alter’magnet
[3], and more specifically to the anisotropic d-wave magnetic phases that features an unconventional combination of strong
time reversal symmetry breaking responses and a vanishing net magnetization. The Mn5Si3 compound displays a large
spontaneous anomalous Hall (AHE) response of a few S · cm−1 below its Néel temperature of about 200 K, to which adds a
topological-like (THE-like) signal below about 90 K, wherein some twisting of the magnetic moments is expected to occur,
as opposed to a collinear arrangement above [1, 2]. What is the anisotropic response of the AHE signal and what is the
exact origin of the THE-like signal are some questions which are still pending and that we will present here. To address the
first point, measurements were taken for a current and/or an external magnetic field applied along several crystallographic
directions. For the second point a systematic study of the finite size effects was performed so as to understand whether the
THE-like signal is the result of an actual topological effect related to the electrons picking up a Berry phase on interaction
with the non-collinear spin structure of Mn5Si3 below 90 K or whether it is the bare summation of several AHE signals of
opposite sign, in an inhomogeneous médium [4].
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Figure 1: (a) SEM image of around 300 nm Mn5Si3 Hall Bar. (b) Hall conductivity of Mn5Si3 Hall bars of several lateral
sizes, measured at 90 K. (c) Lateral size dependence of the spontaneous anomalous (AHE) and topological-like (THE-like)
contributions to the Hall conductivity.
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The elastic coupling between a magnetic film and the substrate is desired in SAW-FMR devices [1–3] and in magnetoa-
coustics [4] when one harness the interaction between a surface acoustic wave (SAW) hosted by a piezoelectric substrate
and the ferromagnetic resonance (FMR) of the magnetic film. We study CoFeB single films grown on various crystalline
orientations of LiNbO3 substrates and on oxidized silicon [5]. We identify the annealing conditions that are appropriate to
induce or suppress in-plane uniaxial anisotropy. Anisotropy fields can be increased by annealing up to 11 mT when using
substrates with anisotropic surfaces. They can be decreased to below 1 mT when using isotropic surfaces. In the first case,
the increase in anisotropy originates from the biaxial strain in the film caused by the anisotropic thermal contraction of
the substrate when back at room temperature after strain relaxation during annealing. In the second case, anisotropy is
progressively removed by applying successive orthogonal fields that are assumed to progressively suppress any chemical
ordering within the magnetic film. The method can be applied to CoFeB/Ru/CoFeB synthetic antiferromagnets (SAFs) but
the tuning of the anisotropy comes with a decrease of the interlayer exchange coupling and a drastic change of the exchange
stiffness. Particularly, vanishing anisotropy is required for resonant coupling between the SAW and the spin waves in SAFs
[6].

We have also combined broadband FMR and FMR microscopy techniques to study spin waves properties in the magnetic
films grown on LiNbO3 substrates. We were particularly interested on the coupling between the acoustic media and the
magnetic films. In order to better understand to what extent this coupling may occur in SAF structures, we analytically
studied the magneto-elastic and magneto-rotation torques associated to a travelling acoustical wave and we estimated the
power that the SAW can transfer to the SAF spin waves. Finally, this formalism was applied to various surface acoustical
waves, such as the Rayleigh wave of a semi-infinite Z-LiNbO3 substrate and the guided Rayleigh wave of thin Z-LiNbO3 film
on a sapphire substrate.
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Near equiatomic composition, FeRh bulk alloys in the CsCl-type (B2) chemically ordered phase present a metamagnetic
transition from the antiferromagnetic (AFM) state at low temperature to the ferromagnetic state (FM) above a critical tem-
perature Tt of 370 K, accompanied by a 1% volume expansion. Despite the high material cost, the competition near room
temperature between both magnetic orders of FeRh holds great potential applications including magnetocaloric refriger-
ation, ultrafast spintronics, antiferromagnetic spintronics, and recording data. Although the magnetic properties of FeRh
nanostructures have been extensively studied over the last 25 years, the mechanism behind the AFM to FM transition is still
widely debated and not well understood [1].

Beyond previous studies on monocrystalline FeRh films [2, 3], here we propose to explore metamagnetic phase transi-
tion in an original 150 nm-thick nanogranular film, made of FeRh clusters preformed in the gas phase using the Low Energy
Cluster Beam Deposition (LECBD) technique, which is subsequently UHV annealed at high temperature to reach the B2
phase. The global thermal magnetization measured by SQUID reveal the same linear behavior for transition temperature
versus applied magnetic field, as in the bulk. But conversely to the bulk, the presence of a broad and asymmetric meta-
magnetic transition with residual magnetization below Tt reveal a non negligible sample proportion that remains in the
FM state at low temperature. The same magnetic behavior has been obtained at the Rh L edge from XMCD measurements
on ID12-ESRF, which evidence strong nanoalloy effects in FeRh nanograins but also probably dipolar interactions between
grains that counteract FM/AFM transition in the cooling mode. We have related the co-existence of both magnetic orders at
low temperature to a triggering size between smaller grains still FM at surface/interface regions and larger AFM grains at
the center of the film as observed from Scanning Transmission Electron Microscopy (STEM-HAADF) in cross-section. (see
Fig. 1)

Figure 1: STEM-HAADF on thick film after annealing (left), Thermal global SQUID magnetization with both linear minimum
and maximum transition temperatures as function of applied field in insert (center) and XMCD evolution at Rh L2 edge
measured in cooling down and heating up mode under 7 Tesla (right) on ID12-ESRF

Moreover, we prepared well-defined samples made of B2 FeRh NPs diluted in amorphous carbon matrix by mass-selected
LECBD to avoid coalescence upon annealing. We put in evidence the persistence of FM order down to very low-temperature
in the 2-10 nm diameter range [4, 5]. This anomalous magnetic order has been ascribed to finite size effects due to structural
intrinsic relaxation at nanoscale. The objective of VOLtage Control of NANOmagnet ANR projet (2020-24) is to study hybrid
multiferroïc nanostructures (0D/2D) in order to control magnetic order under external stimuli as strain or voltage in the
previously paper of Cherify et al. on thin FeRh films [3]. In the case of bimetallic nanoclusters deposited on perovskite oxide
substrate, a strong interplay between surface chemical reactivity, configuration, morphology and magnetic state is expected
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Figure 2: Epitaxy observed from STEM-HAADF on 3nm NP of B2 FeRh [011]/STO[020]with carbon capping. b) XAS/XMCD
signal at Fe L2, 3 edge after external or c) in situ annealing 3h at 700°C in UHV chamber at DEIMOS-SOLEIL

to be exacerbated. So we also present experimental results obtained on mass-selected FeRh NPs with 3 nm and 7 nm in
diameter deposited on TiO3 based substrate with Carbon capping and subsequently UHV annealed at 700°C. (see Fig. 2)

Using synchrotron radiation, we have observed the chemical ordering of FeRh nanoparticles into the B2 crystalline phase
upon annealing from grazing incidence X-ray diffraction (GIXRD), which is also accompanied by a Fe (resp. Rh induced)
magnetic moment evolution visible from X-ray magnetic circular dichroism (XMCD) measurements at Fe (resp. Rh) L edge
at DEIMOS-SOLEIL (resp. ID12-ESRF). Despite their random deposition, the orientation dependence of X-ray diffraction
B2 FeRh peaks indicates that particles are finally adopting preferential orientations on SrTiO3 (STO (001)) substrate. In
addition to the usual epitaxy relationship met for thin films, a novel orientation is observed (corresponding to a 45° in-plane
rotation), as well as other favourable coincidences for particles on STO (001) observed from STEM-HAADF in cross section
(see Fig.2a). At the same time, surface sensitive XMCD measurements at Fe L edge reveal that NPs assemblies on STO,
systematically appear to be (partially) oxidized after transfer in air while FeRh nanoparticles can be reduced thanks to in
situ vacuum annealing (see Fig.2b). Concerning magnetic behavior, as for previous FeRh NPs embedded in carbon matrix
[4, 5], no metamagnetic phase transition has been observed in this NPs size-range from XMCD measurements neither at
Fe nore at Rh L edges. We can conclude that the triggering size is not enough altered by the presence of strain from STO
monocrystal substrate to induce AF order in so small nanocristallites.
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Constitués de réseaux de piliers nanométriques incorporés perpendiculairement dans un film mince, les nanocomposites
verticalement alignés (VAN) présentent une sensibilité accrue aux effets d’interface et un fort couplage de réseau avec
la matrice environnante. En exploitant l’épitaxie et le grand rapport interface/volume présent dans cette architecture,
nous étudions l’interaction de deux effets physiques faisant intervenir des contraintes mécaniques : la photostriction et la
magnétostriction.

Le système modèle est composé de piliers de CoFe2O4 (CFO) au sein d’une matrice de SrRuO3 (SRO). Le premier
de ces matériaux présente une forte magnétostriction

�∼ −590× 10−6
�
[1], tandis que le second présente une dilatation

photoinduite (non thermique) de l’ordre de ∼ 1% à saturation [2], avec un temps de réponse en dessous de la nanoseconde
[3]. Ainsi, un couplage efficace dans ce VAN conduirait à une évolution des propriétés magnétiques des piliers sous excitation
optique de la matrice, à des échelles de temps potentiellement ultrarapides.

Figure 1: Schéma d’un nanofil dans un VAN sous compression (a) et tension (b) selon son axe de révolution. La tension
est produite par la déformation photoinduite de la matrice. Coupe transverse d’un VAN vue par microscopie électronique à
transmission (c), des flèches oranges indiquent les endroits où se trouvent les nanofils.

Bien que des effets induits par la lumière dans ces systèmes aient été mis en évidence [4], une compréhension détaillée
des processus physiques sous-jacents, ainsi qu’une description quantitative des échelles de temps pertinentes pour la dé-
formation photoinduite et le contrôle de l’aimantation font actuellement défaut. Cependant, ces informations sont d’une
importance cruciale pour le développement de dispositifs hybrides ultrarapides, où des impulsions optiques de l’ordre de la
femtoseconde pourraient être utilisées pour manipuler l’état d’aimantation de structures magnétiques nanométriques.

Dans le cadre de futures études résolues en temps, nous présentons une investigation systématique des paramètres
de dépôt sur la nanoarchitecture finale et sur les propriétés magnétiques résultantes, ainsi que leur optimisation pour de
futures recherches en femtomagnétisme. Tous les échantillons ont été fabriqués par ablation laser pulsé dans des conditions
de croissance optimisées pour l’épitaxie sur des substrats de SrTiO3. En utilisant la diffraction des rayons X et la microscopie
électronique en transmission, nous montrons que les nanopiliers obtenus ont un diamètre d’environ 5 à 10 nm avec une
hauteur de l’ordre de l’épaisseur de la couche mince. D’autre part, nous montrons que les nanofils sont soumis à une
contrainte épitaxiale compressive dans la direction perpendiculaire au plan, ce qui stabilise une aimantation perpendiculaire.

Remerciements

Nous remercions l’Agence Nationale de la Recherche, contrat No. ANR-21-CE09-0042, pour leur soutien financier.

235



References

[1] R. M. Bozorth. Anisotropy and Magnetostriction of Some Ferrites. Physical Review 99, 1788–1798 (1955).

[2] Tzu-Chiao Wei, Hsin-Ping Wang, Heng-Jui Liu, et al. Photostriction of Strontium Ruthenate. Nature Communications
8, 15018 (24, 2017).

[3] Kang Wang, Bingbing Zhang, Weimei Xie, et al. Coupling Among Carriers and Phonons in Femtosecond Laser Pulses
Excited SrRuO3: A Promising Candidate for Optomechanical and Optoelectronic Applications. ACS Applied Nano Ma-
terials 2, 3882–3888 (28, 2019).

[4] Heng-Jui Liu, Long-Yi Chen, Qing He, et al. Epitaxial Photostriction–Magnetostriction Coupled Self-Assembled Nanos-
tructures. ACS Nano 6, 6952–6959 (2012).

236



Poster 2.43, November 15th, 10h50–13h00

Magnetization dynamics affected by phonon pumping
Richard Schlitz1,2,*, Luise Siegl2, Takuma Sato4, Weichao Yu3, Gerrit E. W. Bauer4, Hans Huebl5, and

Sebastian T. B. Goennenwein2

1Department of Materials, ETH Zürich, 8093 Zürich, Switzerland
2Department of Physics, University of Konstanz, 78457 Konstanz, Germany

3State Key Laboratory of Surface Physics and Institute for Nanoelectronic Devices and Quantum
Computing, Fudan University, Shanghai 200433, China

4AIMR and CSRN, Tohoku University, Sendai 980-8577, Japan
5Walther-Meißner-Institut, Bayerische Akademie der Wissenschaften, 85748 Garching, Germany

*richard.schlitz@mat.ethz.ch

Combining phonons with ultralow attenuation with the tunability of magnetic excitations outlines a promising path for
improving magnon-based applications [1, 2]. However, to optimally merge phononics and magnonics, a full understanding
of the magnon-phonon coupling needs to be established in order to engineer the coupling strength. In 2018, Streib et al.
predicted that in heterostructures of a magnetic insulator and a nonmagnetic insulator an additional contribution to the
magnetic damping arises from the emission of phonons into the nonmagnetic substrate, proportional to the magnon-phonon
coupling strength within the magnetic insulator [3].

I will present evidence for the pumping of phonons in high-resolution ferromagnetic resonance investigations of yttrium
iron garnet (YIG) on gadolinium gallium garnet (GGG) substrates, showing that these two effects are reliant on the same
physical mechanism [4]. Characterizing the ferromagnetic resonance in a wide frequency range, we can observe both, the
high cooperativity regime, where magnons and phonons hybridize into magnon-polarons [5], and the incoherent regime,
where the pumped phonons constitute a dissipative flow of energy away from the magnetic system, verifying the predic-
tions by Streib et al.. Additionally, we confirm that the magnon-phonon coupling can be straightforwardly understood by
considering the overlap integral of the magnon and phonon amplitude profile across the film thickness [6].
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Understanding the role of the lattice degrees of freedom in the magnetization state of ferromagnetic materials at ul-
trafast timescales is crucial for the development of new energy-efficient technological applications merging spintronics and
high frequency ultrasounds. In the present study, we use femtosecond lasers to pump and probe epitaxial ferromagnetic
superlattices [Cox/Ni3] stacked as follows: 112̄0 sapphire substrate / V (5 nm) / Au (20 nm) / Ni (3) / [Cox/Ni3] ×5
/ MgO (100 nm). Each nickel layer is three atoms thick while the cobalt layers have a variable height x from one to
three atoms. Interfacial anisotropy in such superlattice creates perpendicular magnetic anisotropy [1, 2]. The ultrashort
laser pump pulse partially demagnetizes the sample [3] and generates as well ultrashort acoustic waves in the vanadium
metallic layer through ultrafast electronic heating [4]. These two concomitant effects enable us to investigate the remag-
netization process upon demagnetization and the influence of the lattice deformation on the magnetization state. These
two contributions to the magnetization state perturbation can be disentangled in time thanks to the gold layer that delays
the acoustic wave generated in vanadium and injected in the magnetic layer, from the instantaneous partial laser demag-
netization. With out-of-plane magnetization orientation, the acoustic pulses do not create any magnetic torque and act as
a non-thermal magnetic stimuli. The absence of magnetic torque is sustained by the absence of magnetic precession in
the results. The perturbation of the sample magnetization is optically probed by polar MOKE (magneto-optic Kerr effect)
measurements. MOKE measurements of the probe light polarization provide immediate information on the magnetization
variation at femtosecond timescale.

We experimentally observe a large transient MOKE modification of the probe polarization that corresponds to the time-
of-flight of the picosecond acoustic pulse excited in vanadium and traversing the [Cox/Ni3] superlattice. We experimentally
reveal that this MOKE signal that does not depend on the magnetic state of the sample drastically depends on the in-plane
sample orientation. These experimental results are assigned to complex interplay between ultrafast acousto-optic, ultrafast
magneto-acoustic and ultrafast magneto-optic interactions that render the investigation of the direct coupling between
spins and the lattice intricate. To our knowledge, this MOKE response is not compatible with classical magnetostriction,
and points towards a linear magnetoelastic coupling, commonly known as piezomagnetism. This hint of piezomagnetism
in a multilayered ferromagnetic material opens the door to a new way of controlling magnetism via ultrafast stresses, and
should trigger new studies seeking a better understanding and further enhancement of this effect. Our findings are modeled
analytically and numerically for a better understanding of the complexity of these fundamental interactions and to shine
light on under-explored pathways for ultrafast spin-logic manipulation based on ultrafast acoustic waves.
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During the last decade, a number of basic building blocks of the magnonic paradigm have been experimentally demon-
strated such as the magnon-transistor [1], the spin-torque-induced amplification of spin waves (SWs) [2] and the magnonic
diode [3]. However, up to now, those building blocks intrinsically consume much more energy per logic-gate than their
CMOS counterparts as they still rely on Ampere fields for signal transduction and amplification. An innovative approach
based on elastic strain can be used to overcome this issue, allowing an energy efficient and large scale integration of voltage
controlled magnonic circuits. Indeed, taking advantage of the resonant MagnetoElastic Coupling (MEC), Surface Acoustic
Waves (SAWs) can be used to excite Ferromagnetic Resonance (FMR) of Fe films epitaxially grown on top of a piezoelectric
substrate, even at low frequencies (≤ 1 GHz) [4].

The goal of this study is therefore to use SAW and resonant MEC to trigger magnetization precession in a small Fe pad
(few hundreds of nm long), in order to excite a propagating SW in a waveguide connected to the pad (see Fig. 1(a)). Thus,
the traditional inductive antennas found in magnonic devices are replaced here by SAW-induced SW emission. To prevent
the waveguide from being affected by the travelling SAW, one uses an original approach consisting in slightly modifying
the SWs spectrum by implanting N-atoms in the pristine Fe structure. Such implantation indeed leads to a high level of
tunability of the Fe film magnetic anisotropy, allowing the desired control of the SW dispersion [5].

Figure 1: (a) Sketch of a simple SW emitter with an Fe pad inserted in an FeN waveguide. Propagation of SWs in the
waveguide thanks to the resonant excitation of magnetization precession in the Fe pad by SAWs. An external magnetic field
B0 is applied along the SAW propagation direction (the x-axis). (b) Snapshot of the dynamic transverse component my of
the magnetization in the mid-plane along z, obtained from micromagnetic simulation using Mumax3. The waveguide is
Lx = 30 µm long, L y = 1 µm large and Lz = 53 nm thick. The location of the LFe = 200 nm long Fe pad at the centre of
the waveguide is shown in the figure. The pad is excited out-of resonance at a frequency of 4 GHz with an homogeneous
pumping field of 0.1 mT for B0 = 30 mT.

Fig. 2(a) shows the simulated resonance spectrum of a 200 nm and 400 nm long pad at the centre of the FeN waveguide,
for a static field B0 = 30 mT along the x-axis. The dispersion curve of the corresponding waveguide is shown in Fig. 2(b).
The resonance modes of the 200 nm pad indicated by the red dashed lines are below or at the minimum frequency of the
waveguide dispersion curve fmin ≈ 3 GHz. Thus, by exciting the pad at these frequencies with a small uniform rf field, there
is no propagation of spin waves within the waveguide. Two solutions can be used to overcome this issue. The first approach
is to vary the size of the pad, which can result in resonant modes in the pad above fmin, as shown in the case of the 400 nm
long pad with a resonance mode around 4 GHz. The second approach is to excite the 200 nm pad out-of-resonance at a
frequency higher than fmin. Fig. 1(b) shows a simulation result when using this approach where the 200 nm pad has been
excited at 4 GHz. In this case, it is possible to excite and propagate spin waves over distances larger than 5 µm. All these
simulation results were obtained by exciting the pad with a magnetic field, but the ultimate goal is to mimic in Mumax3
the real experimental excitation with the SAW.

239



Figure 2: (a) Resonance spectra of two Fe pads of lengths 200 and 400 nm, located at the centre of the waveguide. (b)
Dispersion curve of the waveguide of Fig. 1(b) with the 200nm long pad at its centre. The high intensity around f ≈
1.8 GHz and k ≈ 22 rad/µm corresponds to the Fe pad resonance. The red and blue dashed lines correspond respectively to
the frequencies of the resonance modes of the 200 and 400 nm long pads. The values of the uniaxial and cubic anisotropy
constants of the FeN guide are given and are different from those of the Fe pad KuFe = 100 kJ/m3 and Kc1Fe

= 49.6 kJ/m3

.
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Après avoir fait l’objet de nombreuses études fondamentales et donné lieu à de multiples applications au cours du
siècle passé (notamment dans les années 60-70), les effets magnéto-mécaniques connaissent un réel regain d’intérêt ces
dernières années, en raison de leur implication dans de nouvelles thématiques phares du nanomagnétisme telles que la «
straintronique-magnétique ». Dans cette thématique, des déformations élastiques (statiques) imposées au système perme-
ttent de contrôler certaines propriétés magnétiques de celui-ci. L’influence de ces effets magnétoélastiques est aussi très
étudiée dans les dispositifs magnétiques flexibles, généralement composés d’un système magnétique déposé sur un substrat
polymère, dont les applications vont d’objets de la vie quotidienne aux dispositifs microélectroniques.

Par ailleurs, de nombreuses études théoriques et numériques récentes ont montré que des objets magnétiques fortement
courbés pouvaient donner naissance à des textures magnétiques complexes. Ces effets suscitent un fort enthousiasme dans
la communauté du magnétisme. Une question centrale des nouvelles recherches qui en résultent, est comment les car-
actéristiques géométriques telles que la courbure, l’épaisseur, ou bien matérielles comme la qualité de l’interface, ou plus
généralement la déformation mécanique et son hétérogénéité impactent voire contrôlent-elles les changements des pro-
priétés magnétiques des systèmes étudiés ainsi que les nouveaux phénomènes (magnétiques) qu’elles génèrent. A l’heure
actuelle, seuls les effets géométriques sont généralement pris en compte dans les modélisations théoriques et numériques
d’objets magnétiques courbés. Pourtant, de tels systèmes sont nécessairement soumis à des déformations mécaniques dans
la réalité, entraînant des effets magnétiques (magnéto-mécaniques) additionnels qui viennent se rajouter aux purs effets
dus à la géométrie initiale.

Nous avons développé un outil de simulations numériques sous COMSOL Multiphysics® permettant de mettre en évi-
dence les effets de courbure sur le magnétisme des objets étudiés en présence ou en absence de déformation mécanique.
Cet outil est basé sur la résolution des équations de la mécanique du solide couplées à celles du micromagnétisme (équation
de Landau-Lifshitz-Gilbert) dans un cadre non linéaire. Des résultats numériques seront présentés pour montrer la capacité
prédictive de l’outil numérique développé.
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Ces dernières années, la recherche dans le domaine de l’électronique extensible et flexible a gagné en importance, notam-
ment dans le domaine des systèmes magnétiques fabriqués sur des substrats flexibles [1]. Ces systèmes subissent diverses
déformations pendant leur utilisation quotidienne. Dans ce contexte, l’un des principaux défis est de comprendre l’effet
de l’endommagement sur ces systèmes lors de déformations importantes et d’établir la relation entre les phénomènes mé-
caniques et le comportement magnétique, en exploitant le couplage magnéto-élastique [2]. Pour étudier ces phénomènes,
nous avons développé deux nouveaux dispositifs expérimentaux qui combinent un magnétomètre à effet Kerr magnéto-
optique (MOKE) et une machine de traction uniaxiale, ainsi qu’un autre dispositif avec une machine de traction biaxiale
couplée à la diffraction des rayons X (XRD). Ces dispositifs permettent de suivre l’évolution des propriétés magnétiques
des films minces et des nanostructures en réponse aux contraintes appliquées, jusqu’à une déformation d’environ 10%.
L’objectif est de provoquer des phénomènes mécaniques irréversibles tels que la plasticité et la formation de fissures, afin
de différencier les effets potentiels de la magnétostatique et de la magnétoélasticité.

Nous avons étudié des films minces magnétiques présentant différents coefficients de magnétostriction, y compris un
film mince avec une magnétostriction nulle. Parmi ces films, nous avons examiné le cobalt (λ = −14 10−6), le Ni78Fe22
(λ= +1.5 10−6) et le Ni80Fe20 (λ ≈ 0), qui ont été déposés sur une couche de tungstène de différentes épaisseurs, puis sur
un substrat en Kapton (50µm).

Figure 1: (a) La variation du champ coercitif (Hc) en fonction de la déformation appliquée pour le cobalt (Co) et le Ni78Fe22
d’épaisseur 50 nm déposée sur Kapton (127 µm) en essai uniaxial (b) la variation du champ coercitif (Hc) en fonction de la
contrainte appliquée pour le Ni80Fe20 (50nm)/W avec différentes épaisseurs déposée sur kapton(50µm) en essai biaxial.

La figure 1-a présente la variation du champ coercitif (Hc) en fonction de la déformation appliquée pour le cobalt (Co)
et le Ni78Fe22 (50 nm) en essai uniaxial. Pour le Co, Hc varie linéairement avec la déformation dans le domaine élastique
(0-3.7%). À partir de 3.7%, le phénomène de fissuration multiple entraîne une évolution non linéaire de HC . En ce qui
concerne le Ni78Fe22, l’évolution globale de HC est nettement plus faible dans le régime élastique et de fissuration multiple
(8 Oe au lieu de 80 Oe pour le film de Co). Cela indique que le développement des fissures joue un rôle mineur dans le
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comportement magnétique des films faiblement magnétostrictifs. La figure 1-b présente la variation du champ coercitif (Hc)
en fonction de la contrainte appliquée pour le Ni80Fe20 (50nm) avec différentes épaisseurs de W en essai biaxial. Cette
évolution dépend de l’effet de l’épaisseur de W. Plus l’épaisseur est grande, plus la fissuration se produit tôt et les fragments
sont de taille importante [3]. Ceci est corrélé à la taille des fragments observée ex situ.

Nous présenterons le développement instrumental du dispositif (machine de traction couplée au magnétomètre) ainsi
que les mécanismes sous-jacents aux propriétés mesurées pour différents systèmes.
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We have recently demonstrated the generation of circularly polarised unidirectional cavity magnon polaritons in a torus
cavity [1]. This was achieved by the observation of a three-mode interaction picture when the magnetic resonance of a 1.8
mm YIG sphere and a cavity resonance were tuned coincident in frequency and the sphere is positioned at precise radial
locations. The confirmation of predicted results [2] demonstrates the feasibility of a proposed multiple sphere setup, in
which the magnets are placed along the same radial line and will coherently couple to one another, generating a high-
power unidirectional photon beam with high coherence and narrow bandwidth.

To test these hypotheses, we recently designed and fabricated a compact torus cavity using SIW technology as shown
in Fig.1. SIW stands for substrate integrated waveguide, which means that by increasing the dielectric permittivity of the
medium carrying the electromagnetic waves, it is possible to reduce the size of the devices. Note that the multiple sphere
configuration was not possible in the cavity from [1] due to its external diameter (60 mm). The reduction of the SIW cavity
to an external diameter of 36 mm will permit to apply a uniform magnetic across the entire system. The frequency mode
of interest is the second azimuthal harmonic of the TE mode of the cavity, resonating at 10.8 GHz, same as [2]. Here, we
will present frequency-domain simulations and room temperature measurements of two- and three-port devices for a single
and multiple YIG sphere setup.

SIW integration:
Towards multiple YIG 

sphere setup

Figure 1: Compact torus cavity in SIW technology
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Level attraction for photon-magnon coupling in the magnonic system has been observed experimentally very recently [1].
This type of coupling has various potential applications, such as backscattering isolation, non-reciprocal wave propagation
and unidirectional signal amplification [2]. The nature of this coupling is different from that of coherent coupling leading
to level repulsion. A different approach is therefore required to observe it. Among the systems known to generate level
attraction are dissipative coupled systems [3] and two-tone driving [4]. These two systems are the most recent experiments
to observe level attraction. The first system is called “open cavity” and involves travelling waves, while the second involves
two phase-shifted drives for each oscillator (being the magnon and the photon). Here, we present a multimode system,
which is a “closed” system involving level attraction [5]. The aim of this study is to identify the parameters that enable the
transition from level repulsion to level attraction, so as to design and optimize cavities for all types of use.
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Figure 1: 3D printed cavity in (a); and measurements at RT of the transmission spectra of levels repulsion and attraction
vs the frequency and the applied static magnetic field H0 in (b) and (c), respectively.

The hybrid system presented here consists of a double re-entrant cavity and a commercial YIG single crystal sphere of 1
mm in diameter (see Fig.1 (a)). A dielectric with a permittivity of 10 is placed between the two posts allowing to generate an
antiresonance in the S21 parameter. The transmission probe must be placed at the antiresonance to observe level attraction.
Depending on the position of the YIG sphere in the cavity, repulsion or attraction of the levels can be observed as shown in
Fig.1 (b) and (c), respectively.
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Over the last decade, quantum systems offering new computational and sensing capabilities have emerged [1]. One of
these promising hybrid systems involves the interaction between photons and magnons. This interaction is quantitatively
known by the strength coupling g and furthermore by its ratio with the cavity frequency g/ω. It exists three different
domains of this ratio: the Strong Coupling (SC) for g/ω < 0.1; the Ultra-Strong Coupling (USC) for 0.1 < g/ω < 1;
and the Deep-Strong Coupling (DSC) for g/ω > 1. One of the objectives of this last decade is to achieve the USC, and
to approach the DSC [2]. Here, we present a tuneable hybrid system which makes possible experimental observation of a
coupling regime from USC to DSC at room temperature (RT).
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Figure 1: 3D printed cavity in (a); and the evolution of the ratio g/ω and the filling factor η vs the gap d in (b). Inset:
Evolution of the cavity frequency vs d.

The hybrid system presented here is made of a double re-entrant cavity and a commercial single crystal of YIG (see Fig.1
(a)). This cavity has two different low-frequency modes. The magnetic field of the lower mode is not focused inside the YIG
and is therefore not useful for the study. On the other hand, the magnetic field of the upper mode is almost totally focused
inside the YIG. This allows us to recently demonstrate the experimental observation of a coupling regime from SC to USC
[3].

Two new features have been added to this new device in order to observe DSC. First, to approach the DSC, a plate at
the top of one of the posts reduces ω for a fixed distance d between the top of the post and the cavity. Second, we were
able to filter out the low-frequency photon mode completely. This is useful for avoiding overlap between the hybrid modes
and the lower photonic mode. It is also possible to adjust the g/ω ratio by decreasing d, which will decrease ω without
changing g, achieving DSC for d = 3 µm as shown in Fig.1 (b).
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The coherent interaction between microwave photons and magnons is well understood and originates from the Zeeman
coupling between spins and a magnetic field [1, 2]. In the language of second-quantisation, the magnon/photon interaction
Hamiltonian in the rotating wave approximation can be written [3, 4]

HI = ħhg(eiϕcm† + e−iϕc†m), (1)

where c (m) are the annihilation operator for the cavity (magnon) mode. Interestingly, the coupling phase factor ϕ can
usually be neglected in the standard configurations considered in cavity magnonics, as described in Fig. 1.
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Figure 1: In systems that are not loop-coupled, the coupling phase can be neglected. In (a) and (b) we illustrate how the
coupling phase ϕ can be eliminated for a simple magnon/photon system. In (c) and (d), we consider two magnon modes
coupling to a single cavity mode, and again the coupling phases can be ignored.

However, if two magnon modes simultaneously couple with two cavity resonances (see Fig. 2), this phase cannot be
ignored and changes the physics of the system. We consider two such systems, each differing by the sign of one of the
magnon/photon coupling strengths. This simple difference, originating from the various coupling phases in the system, is
shown to preserve, or destroy, two potential applications of hybrid photon/magnon systems, namely dark mode memories
[5] and cavity-mediated coupling [6]. The observable consequences of the coupling phase in this system is akin to the
manifestation of a discrete Pancharatnam–Berry phase [7], which is a signature of a synthetic gauge field.
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Figure 2: If two magnon modes both simultaneously couple to two cavity modes, the system is loop-coupled. In loop-
coupled systems, the coupling phases cannot be ignored and parametrise the physics.
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The recent progress in the elaboration of very thin epitaxial YIG films has brought a renewed interest for exploiting
the resonance properties of such films. We highlight below basic results we have obtained in our cavity-FMR studies at
X-band (9.725 GHz) on the 3 films whose characteristics are given below. These films correspond to (111) oriented YIG
layers deposited by LPE [1] on GGG substrates. We have: F1[YIG58], F2[YIG44], F3[YIG15], with thicknesses in nm.
We performed a detailed study of the angular variation of the resonance spectrum (angle θH of the dc field with the film
normal). A basic observation in these YIG films is that the resonance spectrum corresponds indeed to the superposition of
individual resonances (arising from different parts of the film, weakly coupled by the dipolar interactions). We summarize
below the results obtained for the main characteristics (lineshape, field for resonance Hres, linewidth ∆H) of the principal
resonance (central peak of absorption).

Angular variation of Hres: results and analysis. In perpendicular (PER) geometry, the resonance condition [2, 3] reads
(ω/γ) = HPER−He f f , where He f f = Hi−2/3Han, Hi = 4πM−HA designates the total uniaxial anisotropy with HA = 2K/M
(spin-orbit origin) and Han = 2K1/M is the YIG cubic anisotropy. Taking the measured value for 4πM and the bulk value for
Han (- 87 Oe), we get for the 3 virgin YIG films : F1 : Hi = 1.657 kOe, hence (−HA) = 37 Oe (easy plane); F2: Hi = 1.572
kOe, hence HA = 48 Oe (easy axis); F3: Hi = 1.570 kOe, hence HA = 130 Oe (easy axis ). One observes thus that the
uniaxial perpendicular anisotropy changes sign versus the YIG thickness.

Angular variation of the linewidth ∆H: results and analysis. The linewidth of the principal resonance is the sum of
two different contributions: ∆H = ∆ + ∆Hinh. The first one ∆ corresponds to the relaxation rate of the magnetization
vector (related to the intrinsic damping parameter α). The second one is an inhomogeneous width corresponding to a
distribution∆Hres. The basic observation (as illustrated on the Figure 1 which displays the angular variation of the peak-to-
peak linewidth ∆HAB for F2) is that the linewidth is characterized by a sharp minimum for a specific orientation θH , where
it reduces to the intrinsic width ∆. This behavior is well accounted for theoretically [2] and the present work where the
theoretical framework will be explicitly described. The inhomogeneous contribution∆Hinh, induced by a distribution P(Hi)
[of characteristic width ∆Hi] has been discussed. We highlight basic results derived from the analysis.

Intrinsic damping parameter α for the 3 films: F1[YIG58], F2[YIG44], F3[YIG15]. We get: for F1, ∆Hmin = 1.23 Oe at
θH ∼ 45 deg corresponding to α(F1) = 2.5× 10−4 ; for F2, ∆Hmin = 1.13 Oe at θH ∼ 31 deg leading to α(F2) = 2× 10−4

; for F3, ∆Hmin = 2.56 Oe at θH ∼ 36 deg leading to α(F3) = 5.2 × 10−4. In summary, the very low values of the
damping parameter α found for these LPE very thin epitaxial YIG films illustrate their high quality. The inhomogeneous
width observed in PER geometry provides a good estimation of the width ∆Hi of the distribution P(Hi). For F1, we find
∆Hi = 2.05 Oe corresponding to a remarkable low value (1.25× 10−3) of the relative inhomogeneity (∆Hi/Hi) extended
to the mm size film.
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Figure 1: Angular variation of the peak-to-peak linewidth ∆HAB for F2.
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Over the last decade, cavity magnonics has attracted a lot of attention. The study of the associated quasi- particle of
cavity magnonics, cavity magnon polaritons (CMP), which refer to strongly coupled magnon-photon system, offers new
possibilities of sensing and quantum information processing [1, 2] as well as a new interesting platform for disruptive
RF applications. Cavity magnonics generally operates with standard ferromagnetic materials like YIG due to its ultra-low
magnetic damping. Recent studies have focused on two directions: (i) reaching magnon-photon regime in the quantum
regime and (ii) in identifying new approaches to tune the coupling between magnon and photons from dissipative to
conservative [3]. Antiferromagnetic materials (AFM) have until now been barely studies in the field of cavity magnonics
for two main reasons: their sub-THz and THz frequencies are not easily accessible in standard ferromagnetic resonance
measurements, and the dissipation rates of antiferromagnetic excitations are generally large. On the other hand, this higher
operating frequency offers the possibility to be less sensitive to temperature fluctuations when operating at low temperature,
and the variety of antiferromagnetic modes potentially offers the possibility to achieve bright and dark mode coupling in
the same system.

Figure 1: a) Sketch of the orientation of the two circularly polarized modes with different handedness for an easy-axis
AFM. b) describes the dependency of ω according to the external field, around the spin flop field HSF with HE and HA the
exchange and anisotropy fields respectively. In c) is displayed an exemplary result of the magnon photon coupling in the
easy axis AFM Cr2O3. The avoided level crossing at 36 GHz is due to the coupling of cavity photon with magnons from the
low frequency mode.

Recently, it has been demonstrated that low damping AFMs like iron oxide offer the possibility to reach a strong coupling
regime between cavity photons and antiferromagnetic magnons [4, 5]. Here, we propose to extend this approach to another
uniaxial antiferromagnet with a low magnetic damping as Cr2O3. Cr2O3 is an easy axis AFM, displaying two energetically
degenerate magnon branches that are left and right-handed circularly polarized. We first investigated the magnon photon
coupling in Cr2O3 using the left-handed mode shown as Mode 2 in Fig. 1a). Exemplarily, Fig. 1c) shows a measurement at
100 K of which evidences the possibility to also achieve a strong coupling with the left-handed mode of Cr2O3, here with a
cavity mode around 36 GHZ. Our goal is then to extend this study to the right-handed mode of Cr2O3 and demonstrate the
possibility to switch on/off the coupling with AFM modes depending on the polarization of the excitation.
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Spintronics-based THz emitters that are driven by spin-to-charge conversion are considered excellent sources of THz
radiation owing to their large bandwidth, simple fabrication process, and low power operation compared to standard THz
sources. In general, a spintronics-based THz emitter is composed of a ferromagnetic layer (FM) adjacent to a non-magnetic
layer (NM). Upon being excited with a femtosecond laser pulse, a thermal gradient is created, which generates hot electrons
that will induce a spin current in the FM. The induced spin current flows to adjacent NM material creating a charge current
due to the inverse spin Hall effect (ISHE). This results in the THz emission from the NM material [1, 2].

Here, we demonstrate the effect of CoxFe1-x alloy composition on the THz emission. With this, we are trying to probe
the underlying mechanism for magnetization dynamics in the fs time scale with the change in alloy composition. We found
that the THz signal has a monotonic decrease with the increase in x i.e., Co concentration. This change in amplitude could
be due to the different Curie temperatures (Tc) corresponding to different compositions of CoxFe1-x. Pratzer et al. shows a
similar dependence for Tc with the Co concentration in CoFe alloy[3]. Along with this, the results of ultrafast magnetization
dynamics will be discussed in this poster.

Figure 1: THz signal obtained for the stack Ta(2 nm)/CoxFe1-x(2 nm)/Pt(2 nm) alloy (a) THz pulses obtained for different
Co concentration. (b) THz peak amplitude variation as a function of Co concentration.
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Spintronics is the thriving field of research to control the electron spin degree of freedom for potential applications in
computing, storage and memory, and fundamental science. Spintronic devices are promising for lower power consumption,
higher information density, and non-volatility compared to conventional electronics. However, to utilize the electron spin
to its fullest potential, the question about efficient generation, detection, transport, and inter-conversion of the electron’s
intrinsic angular momentum has to be answered. Over the last three decades, the scientific community has mastered
spin control in the static regime (DC)[1]. The breakthrough in transient and ultrafast spintronics can be attributed to the
detection of the terahertz (THz) radiation emitted as a consequence of an ultrafast demagnetization[2] and ultrashort spin-
current burst injection from a ferromagnet into a metallic layer[3]. In such a Ferromagnet/Metal heterostructure, the THz
emission is mediated via the Inverse Spin-Hall effect (ISHE). Recently, it has been demonstrated that the time-varying charge
current can be generated via spin injection at a Rashba-split interface[4–6] (IREE) or via a hot-carrier gradient established
in the magnetic heterostructures[7] (through anomalous Hall or Nernst effects, for example).

Figure 1: Normalized THz emission measured from the CoFeB(5 nm)/Pt(3 nm), CoFeB(20 nm)/Pt(3 nm),
CoFeB(5 nm)/MgO(6 nm), and CoFeB (20 nm)/MgO(6 nm) hybrid nanostructures. The solid lines show the signal
obtained when the pump pulse impinges on the capping Pt/MgO layer and the dashed curves are measured when excited
from the side of the substrate. If any, the change in the THz polarity between the two sample orientations (solid vs. dashed)
is directly associated with a reversal of the in-plane charge current related to a reversal of the relevant light-induced
spin-polarized current.

In this work, we use 165 femtosecond, 805 nm laser pulses to generate the ultrafast spin-current bursts in 5 and 20 nm
thick ferromagnet CoFeB. This net spin current can then be converted into a transient in-plane charge current within the
ferromagnet itself (AHE or ANE), through the injection into the Rashba states established at the CoFeB/MgO interface[6]
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(IREE) or injection into the 3 nm thick Pt layer (ISHE) deposited onto the CoFeB. The ultrafast spin-to-charge conversion me-
diated by the Hall or Rashba conversion subsequently leads to a charge current burst and free-space emission of broadband
THz electromagnetic radiation. Employing THz-Time Domain spectroscopy, we have recorded the THz radiation emitted
from a set of CoFeB/MgO and CoFeB/Pt bilayers due to the spin-to-charge conversion at the sub-picosecond timescale.
Specifically, we address the symmetry of the spin-to-charge conversion inside the bulk of the ferromagnet and inside the
heavy-metal Pt or at the CoFeB/MgO Rashba interface. For fixed experimental conditions, Figure 1 shows that the sam-
ple reversal and excitation from the capping Pt or MgO layers (solid lines) compared to the pumping from the substrate
side (dashed lines) leads to the complete reversal of the direction of the injected spin-polarized current and reversal of the
polarity of the emitted THz. On the other hand, the symmetric THz emission from CoFeB (20 nm)/MgO (6 nm) strongly
suggests that the generation of the transient charge current and subsequent THz emission is driven by the spin-orbit cou-
pling within the 20 nm thick CoFeB ferromagnetic film (i.e., bulk contribution such as AHE). Conducting a comparative
analysis of experiments on CoFeB/Pt and CoFeB/MgO bilayers, we have identified that in the CoFeB (5 nm)/MgO (6 nm)
bilayer, the THz emission is mainly driven by spin-injection and subsequent spin-to-charge conversion at the Rashba-split
interface along with a significant contribution of bulk effects. This is associated with a strong decrease in the total emission
intensity for the IREE system. We suggest that this is due to the spread in the energy of the emitted spin carriers and their
relative inefficiency to fill the “optimized” Rashba split electron band structure close to the Fermi level[6]. This latter effect
has been addressed by changing the pump pulse photon energy. Doing so, we demonstrate the tunability of the Inverse
Rashba-Edelstein spintronic emitter, opening new perspectives for ultrafast spintronics.

References
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Ultrafast magnetization switching induced by a single femtosecond laser pulse, under no applied magnetic field has
attracted a lot of attention in the last 10 years because of its high potential for low-energy and ultrafast memory applications.
Single-pulse helicity-independent switching has mostly been demonstrated for Gd-based materials. It is now necessary to
optimize the pulse duration and the energy needed to switch a Gd-Fe-Co magnet depending on the alloy thickness and
composition.

Figure 1: Magneto-optical images and all-optical helicity-independent switching (AO HIS) state diagram for a 20-nm
Gd24(FeCo)76 film. (a) Magneto-optical images of Gd24(FeCo)76 after exposure to a single linearly polarized laser pulse
with a pulse duration of 50 fs, 1 ps, and 3 ps, and with various fluences ranging from 9.5 to 15 mJ/cm2. (b) Magneto-
optical images of Gd24(FeCo)76 after exposure to a single linearly polarized laser pulse with a pulse duration of 4 ps and a
fluence of 17 mJ/cm2. (c) AO HIS state diagram: switching fluence Fswitch (open black square and full blue square) and
multidomain fluence Fmul ti (full red dot) as a function of the pulse duration for a single linearly polarized laser pulse. The
blue full squares represent the switching fluences Fswitch recorded when the diameter of switched area reaches around 10
µm. The open squares are the fitting results obtained via the method proposed by Liu et al. [1]. The spatial FWMH of laser
beam is around 70 µm.

Here we experimentally report state diagrams showing the magnetic state obtained after one single pulse depending
on the laser pulse duration and fluence for various Gd-Fe-Co thin films with different compositions and thicknesses (Fig.
1). We demonstrate that these state diagrams share similar characteristics: the fluence window for switching narrows for
longer pulse duration and for the considered pulse-duration range the critical fluence for single-pulse switching increases
linearly as a function of the pulse duration while the critical fluence required for creating a multidomain state remains
almost constant. Calculations based on the atomistic spin model qualitatively reproduce the experimental state diagrams
and their evolution. By studying the effect of the composition and the thickness on the state diagram, we demonstrate that
the best energy efficiency and the longest pulse duration for switching are obtained for composition around the magnetic
compensation[2].
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Ultrafast manipulation of magnetic order has challenged our understanding the fundamental and dynamic properties
of magnetic materials. So far single shot magnetic switching has been limited to ferrimagnetic alloys and multilayers [1].
Whether a similar scenario can be observed in antiferromagnets remains unknown. In ferromagnetic (FM)/antiferromagnetic
(AFM) bilayers, exchange bias arises from the interfacial exchange coupling between the two layers and results in a field
shift (He) of the FM layer hysteresis loop. Exchange bias phenomena have found widespread use in fundamental scientific
research and a large variety of spintronic devices, including sensors and magnetic random-access memory (MRAM) [2].
Many studies have already focused on the possibility to manipulate the exchange bias effect using thermal annealing with
or without applied magnetic field and spin polarized current [3, 4]. Here we demonstrate the possibility to manipulate the
exchange bias (change of the sign and amplitude of He) with a single femtosecond laser pulse in perpendicular to film plane
magnetized IrMn/CoGd bilayers, as shown in Fig. 1. We have studied the influence of the laser fluence and the number
of pulses for various IrMn thicknesses to determine the fastest and the most energy-efficient way to set the exchange bias
field. Our results establish a method to set the exchange bias in a bilayer system that has potential application for ultrafast
and energy-efficient spintronic devices.

Figure 1: (a), Sketch of the IrMn/CoGd bilayer. (b), Hysteresis loops obtained on the annealed stacks for IrMn thickness
from 2 to 10 nm measured by MOKE. (c), Hysteresis loop of IrMn(5)/CoGd(4) before and after exposure to a single linearly
polarized laser pulse with a pulse duration of 40 fs and a fluence of 17 mJ/cm2 (d), Modulation of the exchange bias field
as a function of the number of pulses with a pulse duration of 40 fs and a laser fluence of 17 mJ/cm2.
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Controlling magnetization without using magnetic fields is a technology-driven strong motivation in the quest for new
electronic devices allowing for fast control with low energy consumption. In that regard, hybrid materials coupling heavy
metals and lighter 3d transition metals have been developed for current assisted magnetization switching, while electric-
field control would make use of multiferroic materials [1]. However, the fastest control can be achieved using light: indeed
all-optical switching has emerged recently as a powerful technique to drive the magnetization of thin films [2].

We are trying to adopt such an all-optical strategy to drive the magnetization state of magnetostrictive nanowires grown
inside a photostrictive matrix [3]. In this type of sample, the magnetic anisotropy of the nanowires could be controlled by
an optical trigger wich will modify the strain in the matrix. This approach could allow to finely tune the magnetic properties
for applications.

Since the hybrid samples of nanowires embedded in a photostrictive matrix are still being optimized at the Institut des
Nanosciences de Paris, in my first year of PhD I focused on the study of the magnetization dynamics of thin films made with
the same material as the nanowires: a nickel rich (> 80 %) cobalt-nickel alloy. The femtosecond magnetization dynamics
has already been studied in several ferromagnetic alloys and multilayers systems such as iron-nickel or cobalt-platinum.
These systems typically show ultrafast demagnetization as discovered by Beaurepaire et al. in pure nickel in 1996 [4]
but there have been contradictory results concerning possible different demagnetization time or delays in the onset of the
demagnetization of the different elements composing the system [5], [6]. Ultrafast demagnetization has not been studied
so far with element selectivity in cobalt-nickel alloys and we hope that our report will contribute to the development of a
unified picture of this phenomenon in alloys.

Figure 1: Pump-probe time resolved XUV resonant magnetic scattering setup (a) Details of the experiment. M : flat mirror,
TP : toroidal mirror, SM : spherical mirror, I : iris, L: lens, WP : half wave plate, BS : neam stop, F : Al filter, G : grating.
The pressure in the HHG chamber (light blue) is kept below 10×4 mbar. (b) Spectrometer CCD snapshot. (c) MFM image
of the Co15Ni85 sample showing the stripe domains with a periodicity of 260 nm.

To study the magnetization dynamics in our samples, we are pumping them out of equilibrium using 30 fs, 2.5 mJ and
800 nm infrared (IR) pulses from a 5 kHz Ti:Sapphire laser (Coherent laser Elite duo). Only a small fraction of the pulses is
used for the pump, the main part is focused into a gas cell to generate high harmonics (see experimental setup on figure 1).
As a reminder, high harmonics generation (HHG) is a non-linear phenomenon which allows one to get from a ω frequency
laser a radiation at ωq frequencies, with q the harmonic orders [7]. Therefore, HHG constitute a XUV source that allows us
to probe the magnetization state of the sample with chemical selectivity by accessing the absorption M edges of cobalt and
nickel between 55 and 70 eV.
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The sample we have studied is a 100 nm thick cobalt-nickel film grown on a silicon substrate. Because of the magne-
tostriction of this alloy, a weak perpendicular magnetic anisotropy exists inside the thin layer. Therefore, above a threshold
thickness (several tens of nanometer here), a magnetic structure consisting of alternating nanometric magnetic domains
with out of plane components of opposite directions will appear. We can align these domains by applying a magnetic field
in the plane of the film: the magnetic domains will tend to align in the direction of the magnetic field (figure 1 (c)). This
structure will act as a diffraction grating for photon energies in resonance with the M absorption edges of cobalt (around
60 eV) and nickel (around 67 eV) [8].

Figure 2: Preliminary result (a) Magnetic scattering on the CCD camera - Blue box : nickel scattering spot, Red box : cobalt
scattering spot, (b) Magnetization variations of CoNi sample depending on the delay - the curves correspond to the intensity
integrations on the zones showed on the left image.

When we send the HHG beam onto the sample, we can then observe a reflected scattering pattern on a CCD camera
(see figure 2(a)). There are two main spots on this pattern corresponding to nickel (higher intensity) and cobalt (lower
intensity). By following the intensity of these spots as a function of the time delay between the pump and the probe, we
can reconstruct the magnetization dynamics of cobalt and nickel simultaneously (see figure 2(b)). The preliminary results
indicate that there is a delay of about 20 to 30 fs between the onset of demagnetization of cobalt and nickel and that the
cobalt demagnetizes less than nickel (see figure 2(b)). The data analysis is still ongoing and this observation remains to be
ascertained. Moreover, we plan to study other film compositions and we have to confront our results to models which have
been developed to explain the ultrafast demagnetization in nickel-iron and cobalt-platinum systems [5], [6].
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Magnetic thin films with perpendicular anisotropy can exhibit nanoscale domain patterns which provide an ideal testbed
to analyse ultrafast spatial changes of spin textures induced by femtosecond laser pulses. While a variety of experiments
has been performed on ferromagnetic alloys and multilayers [1], unraveling for example the importance of superdiffusive
spin transport [2], less data are available on ferrimagnetic alloys.

In this work, we start by presenting an analysis of static magnetic properties in sputter-deposited ferrimagnetic Co-
Tb thin films. By combining MFM, MOKE and SQUID/VSM measurements with micromagnetic simulations, we provide
a systematic description of the impact of film thickness, concentration, and temperature on anisotropy and the resulting
magnetic domain structure. We then proceed by showing time-resolved resonant magnetic x-ray scattering experiments
performed at the Co M2,3 and Tb O1 edge used to study laser-induced demagnetization effects in a Co88Tb12 alloy exhibiting
regular magnetic stripe domains.

Figure 1: (a) Magnetic domain structure in a Co92Tb8 thin film (50 nm thickness) evidenced with magnetic force microscopy
(MFM). (b) Schematic of the pump-probe XRMS setup used in the present study.

In these thin films, we evidence an ultrafast decrease of magnetization on sub-ps timescales in the Co as well as in
the Tb sublattice, and we provide a quantitative description of the demagnetization behavior. Combining the femtosecond
temporal with nanometer spatial resolution of our pump-probe experiments, we show that on ultrashort timescales (<1 ps),
no detectable change in domain size and domain wall size occurs [3, 4]. However, we evidence a broadening of the domain
walls which sets in after several ps and which we attribute to a decrease of the uniaxial anisotropy due to energy transfer
to the lattice. Our static temperature-dependent magnetometry measurements corroborate this interpretation [5].
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Abstract

Magnetism is intrinsically linked to the concept of phase transition: ferromagnetic order can be destroyed simply by
increasing temperature. In some cases, temperature favours a change in magnetic order. Metallic FeRh undergoes a first-
order meta-magnetic phase transition from antiferromagnetic to ferromagnetic order at 360 K. It couples structural, magnetic
and electronic order parameters. We show that, from the point of view of electronic structure, the phase transition triggered
by ultrafast laser pulses is complete in 300 fs. Well before the structural and magnetic parameters stabilise.

The magnetic order is extracted from the specific characteristics of the electronic structure: the ferromagnetic phase has
a minority spin band crossing the Fermi level. With synchrotron radiation experiments and ab initio calculations we have
identified the fingerprint of the FM phase in FeRh, it consist of a narrow peak in the electronic density of states, located
about 150 meV below the Fermi energy E. [1] [2] We used state of the art momentum microscope (HEXTOF) end station)
to perform pump-probe experiments at the monochromatized PG2 beamline of the FLASH free electron laser using near-
infrared (800nm, 1.55 eV) pulses of 90 fs coupled with 130 fs soft X-ray pulses with a photon energy of 123.5 eV. We
measured electron energy distribution curves (EDC) as a function of the delay between the optical pump and X-ray probe
pulses. [3]The relaxation of electrons toward the Fermi energy and the subsequent changes in the electron density near the
Fermi level at different time delays are well identified from the differential matrix, presented in Fig: 1 a.

Figure 1: a) Energy and delay dependent differential matrix of the photoemission signal. The average of the spectra
measured before the pump (between - 1 ps and -0.5 ps) is subtracted from each spectrum. The laser induced increase in
the electronic density close to the Fermi level is observed at positive time delays. The red, blue and black bars on the right
hand side mark the representative integration regions for tracking the electronic dynamics. b) Temporal evolution of the
electronic density in the three regions marked in a)

We selected three energy ranges marked by the red, blue and black bars placed on the right-hand side of Fig: 1 b. The first
(red) identifies the total number of electrons injected into the unoccupied states upon photoexcitation. The second (blue)
monitors the formation of the Fe-minority peak across the phase transition, and the third (black) follows the modification of
deeper bands. The time evolution of the integrated signals in each range is shown in Fig. 1b. The The energetic distribution
of band structure is independent of spin alignment along a particular direction.

266



The injection of electrons into the unoccupied states takes place near zero delay and then rapidly decays (red empty
circles), the process being finished by about 500 fs. The data represented by black diamonds in Fig. 1b nearly mirror the
population of the unoccupied levels up to 300 fs, with a fast depletion and recovery. The curve stabilises thereafter at a
finite value, implying permanent modifications of the deeper bands after 300 fs, already, during which the Fe minority peak
is still shifting toward its final position at 150 meV below EF. The intensity at the position of the Fe-minority peak starts to
grow as early as the laser excitation (filled blue circles), due to both the modification of the electronic structure and the
Fermi level smearing. It is only about 300 fs after the excitation that the electronic density corresponding to the minority
band peak displays a sharp increase, associated with a persistent band structure modification. So far this established the
fastest timescale related to the meta-magnetic phase transition in FeRh.

Time-dependent density functional theory calculations of the electronic structure of FeRh [3] are used to interpret the
laser-induced dynamics near the zero-time delay. In particular, they suggest that a significant charge and spin transfer from
the Fe atoms toward the Rh ones, together with intra-atomic electron redistributions, are the ultimate origin of the phase
transition. The overall very good agreement between theory and experiment indicates that the changes in the band structure
are as important as changes in the electron population for describing ultrafast dynamics of phase transitions.

Our findings supported by theoretical calculations demonstrate that the microscopic manifestation of this magnetic first
order phase transition resides in particular features of the electronic structure. During the ultrafast laser pumping, hot
electron excitation triggers a significant charge and spin redistribution, resulting in the establishment of the FM phase.
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Magnetic Helicoidal Dichroism (MHD) was predicted using classical electromagnetic theory in analogy with Magnetic
Circular Dichroism (MCD) as a phenomenon observed with beams carrying Orbital Angular Momentum (OAM) instead of
Spin Angular Momentum (SAM) [1]. MHD appears as a consequence of the interference of OAM carrying light modes that
are populated after the interaction with a magnetic topology. Upon interaction of an OAM carrying beam (of topological
charge l) with a magnetic topology, the intensity of the outgoing beam is determined by a redistribution into l + n modes,
where n represents all the azimuthal decomposition coefficients of the magnetic structure symmetry. An application of MHD
is using it as a probing tool based on its capability to give information about the magnetization distribution in the sample
[2].

Figure 1: (a) Schematics of the simulated Py dot. (b) In-plane magnetization distribution at bottom surface of the dot
(z = 1nm) and top surface respectively (z = 59nm) for different time values; The color code is linked to the in-plane polar
angle of the magnetization vector. (c) Time evolution of the vortex structure deformation at different z position going
gradually from the top to the bottom surface. ∆eq is defined as the difference between the time evolving micromagnetic
configuration and the vortex equilibrium configuration: Color code: orange - demagnetized regions affected by the laser;
gray - regions unexposed to the laser. The corresponding deformation average curves by regions are brown and black for
the top (heated) and bottom (initially unaffected) parts of the dots respectively. (d) Deformation average curves for the 3
scenarios mentioned in the text.

Very promising experiments have recently been carried out on magnetic vortices, which are magnetization structures
whose symmetry makes it possible to observe MHD, since only two coefficients of the decomposition (corresponding to
n= 1) are non-zero [1] . Particular systems that allows the stabilization of a magnetic vortex are permalloy (Py) dots with
a triangular indent (packman shape) in which the magnetic vortex is centered in the middle of the dot [2] . Since the laser
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penetration depth is of the order of 20nm, the bottom structure of the packman is considered as unaffected by the pump
laser pulse. We carried out systematic micromagnetic simulations [3] of the mechanism of reconstruction of the vortex
structure after the action of the pump laser beam, which heats the permalloy and demagnetizes it.

The size, shape and material parameters of the packman sample were selected to ensure that the vortex state corresponds
to the ground state of the system at remanence. Several scenarios of demagnetization were considered depending on the
laser beam features (e.g. diameter, attenuation length, see Fig. 1 (a)) . The size of the laser beam was chosen either smaller
(scenario 1) or larger (scenario 2) than the sample surface. The penetration of the laser through the sample thickness was
also varied (scenario 3) affecting thus the volume of the sample that was demagnetized.

The simulations have shown that the structure of the micromagnetic configuration evolves in a two-stage mechanism.
Firstly, due to the demagnetization of the top 20nm of the packman dot, the initially unaffected bottom part of the dot gets
strongly disturbed due to the exchange interactions with the demagnetized top part (Fig. 1 (b): t = 20ps, z = 1nm). This
is a fast process which takes place in about 25ps. A maximum of deformation of the structure is then observed followed
by a second stage involving spin-wave propagation over the entire volume of the sample corresponding to a much slower
process longer than 200ps (Fig.1b: t = 200ps, z = 1nm and z = 59nm). These characteristic times of the magnetic vortex
recovery remain to be confirmed by future MHD experiments.
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The ever-growing demand for data consumption pushes new information technologies to process larger volumes of data
at a faster rate and lower energy cost. For ultrafast information handling, spin currents which are the vector of spin in-
formation, can be generated, propagated and detected on the sub-picosecond timescale and at nano-sizes [1]. Therefore,
the research field of ultrafast spintronics stands for a major player to tackle these challenges. Among the large variety
of magnetic textures, antiferromagnets, where each neighboring spins is antiparallelly aligned, present several interesting
features: “magnonic-type” spin currents can be propagated in antiferromagnetic insulators [2] even over considerable
distances in insulating single crystals [3]; and antiferromagnets exhibit peculiar dynamic properties since their magnetic
resonances [4] directly lie in the THz range (see for example [5]). Therefore antiferromagnetic insulators could be ap-
pealing candidates to propagate and manipulate magnonic spin currents and spin information at THz frequencies. This
concept has been clearly evidenced in the DC and GHz regime (see for example [3]), but opened questions remain regard-
ing antiferromagnetic spin current transport properties at picosecond timescales, i.e. when spin currents coherently match
the specific antiferromagnetic THz resonance. This is the main objective of the present work in which we aim at studying
the transfer of spin angular momentum to antiferromagnetic insulators at picosecond and sub-picosecond timescales. Our
experimental approach consists in evaluating the effect of an adjacent AF layer on the ultrafast demagnetization of a fer-
romagnet/antiferromagnet bilayer by performing time-resolved magneto-optical measurements (Tr-MOKE). (Fig 1). This
technique, based on femtosecond laser pulses, is a standard pump/probe approach allowing to track the ultrafast dynamics
of a ferromagnetic layer [6]. In this presentation, we will show experimental evidence for ultrafast spin current transfer in
two prototypical high frequency antiferromagnetic insulators, namely NiO and BiFeO3, both with resonant frequencies in
the THz range. BiFeO3 is also known as the archetypal room temperature multiferroic whose advantages in controlling its
spin textures will be discussed. Importantly, ferromagnetic resonance (FMR) measurements performed on the same systems
allow us to compare the GHz and THz regimes.

Figure 1: a. Ultrafast time-resolved magneto-optics. b. Ultrafast demagnetization curves for a single layer of CoFeB and a
bilayer of CoFeB/BFO.
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Spin-charge interconversion (StC) driven by spin-orbit (SO) phenomena has opened new avenues for designing spin-
logic architectures with low-power consumption. Recently, Intel has proposed a device called MESO [1] (Magneto-Electric
Spin-Orbit) predicted to have switching energies at the attoJoules scale (aJ/bit computing), orders of magnitude smaller
than that of current non-volatile technologies. This new concept has the power to challenge or complete the CMOS technol-
ogy in the next decade while still being a suitable option for new logic paradigms like in-memory computing. The writing
process requires magnetization reversal, while the reading component relies on the StC signal resulting from SO phenom-
ena.
Recent studies in spintronics have led to the discovery of spin-charge interconversion phenomena in ferroelectric materials.
The possibility to control the spin-charge interconversion by switching the material ferroelectric state [2],[3] allowed us to
propose the FerroElectric Spin Orbit device [3]. Its biggest advantage with respect to the MESO device is the possibility to
avoid the necessity of multiferroic switching to change the StC output signal of the device. Its overall simplicity make FESO
a valid alternative to MESO as a Beyond-CMOS spin-logic based devices.
In this context, the large-scale fabrication of such devices is a foreseeable challenge. Furthermore it is difficult to develop
functional nanodevices whose spin transport properties are similar to those of the unpatterned layers. Engineering the fer-
romagnet (FM) thickness and the interlayer between the FM and the SHA material are found to be fundamental to optimize
the signal and improve the yield. Here, we discuss the potential of sputtered GeTe as a spin-orbit material for FESO devices.
GeTe is a ferroelectric semiconductor, whose spin-charge conversion depends on the ferroelectric polarisation state [2].
We study the transport properties of sputtered GeTe, and then demonstrate the spin-charge interconversion in GeTe-based
nanodevices at room temperature (see Fig. 1).
We also study the potential for MESO devices of a parent compound, Sb2Te3, a toplogical insulator whose surface states can
be used to perform spin-charge conversion. In conclusion, we will also discuss the advantages of our design for geometrical
downscaling (Fig. 1 (d)).
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Figure 1: (a) Scanning electron microscopy of a nanofabricated GeTe device. (b) Cross section of the different layers
composing the devices (along the black dotted line of (a)). (c) Charge-to-spin interconversion signal. Geometrical scaling
of the interconversion signal with the channel width.
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In order to develop new low-power technologies, the current-induced detection of a magnetic state has drawn an in-
creasing attention towards spin-orbitronics. This research and development field in indeed at the origin of new concepts
such as the Magneto-Electric Spin-Orbit (MESO) technology proposed by Intel, relying on magneto-electric switching and
spin-charge interconversion in a spin-orbit coupling material. MESO is a non-volatile logic/computing technology, meaning
that the information storage does not require a continuous voltage application and can be embedded directly in the com-
puting element. Consequently, it could allow an in-memory computing device operating in the atto-joule range.

In parallel of these developments, we have recently proposed the Ferro-Electric Spin-Orbit (FESO) device [1], which is
based on the control of the spin-orbit properties by ferroelectricity. The FESO device relies on spin injection, spin-to-charge
conversion and a non-volatile mechanism such as ferroelectricity or charge-trapping. Its main advantage compared to the
MESO technology proposed by Intel is that it does not require a complex magneto-electric switching.

In order to have a switchable spin-charge interconversion, it is primordial to choose a spin-orbit coupling material.
Recently, oxide 2D electron gases (2DEG) have emerged as promising orbitronics systems, which benefit from an efficient
spin-charge interconversion through the Rashba-Edelstein effects. We have demonstrated an enhancement of the spin-to-
charge conversion efficiency by two orders of magnitude in SrTiO3-based 2DEG compared to conventional heavy metals [2],
along with a non-volatile ferroelectric control of the spin-to-charge conversion detected using spin-pumping experiments [1]
and the non-volatile electric-control of spin-orbit torques (charge-to-spin conversion) detected using the Second Harmonic
Hall method [3]. While demonstrating the non-volatile electric-control of the spin-to-charge and charge-to-spin conversions
has required two different patterned devices using different techniques, the FESO device relies on a fully electrical signal
detection, making possible to measure electrically both the spin-to-charge and charge-to-spin conversions on the same
device.

Figure 1: (a) Scanning electron microscope image of the oxide-based FESO device. (b) Measurement principle scheme
of the FESO device, in which a spin-polarized current is injected from the top ferromagnetic layer towards the spin-orbit
coupling material, in order to generate a transverse voltage. (c) Spin-to-charge conversion signal at 10 K, applying a 10 µA
AC current at 67 Hz.

Here, we demonstrate the reading functionality of an oxide-based FESO device. The T-shaped part (in blue on Fig.1) is
composed of a 500 µm thick SrTiO3 substrate, on which a Ta layer is deposited to create a 2DEG at the SrTiO3/Ta interface.
The spin-orbit coupling properties of the 2DEG enable to consider it as a Rashba interface, which enables the spin-charge
interconversion. The ferromagnetic injection layer (in pink on Fig.1) is a CoFe layer. The AC charge current injected in
the ferromagnetic layer gets spin-polarized. This leads to a spin accumulation at the CoFe/2DEG interface, and thus to
the injection of a spin current in the 2DEG. Adding a tunnel barrier, usually a MgO layer in between the ferromagnet and
the 2DEG, favors the spin injection and then the spin-to-charge conversion in the 2DEG. The produced charge current is

275



detected through the voltage measurement Vx y .

Magneto-transport measurements enabled to obtain a reproducible strong spin-to-charge conversion. The signal indeed
shows a hysteresis behavior, with an amplitude up to 2 Ω. In addition, the reverse charge-to-spin conversion measurement
also revealed the same signal amplitude, which demonstrates an equivalent efficiency for both spin-charge conversions in
this oxide-FESO device. Moreover, the study of the temperature dependence of the signal amplitude highlights the decreas-
ing spin-to-charge conversion when increasing the temperature. This is mainly due to the decreasing conduction of the
2DEG which is responsible for the conversion. We also evidence the contribution of side effects such as the planar Hall
effect and the anomalous Hall effect studying the shape of the measured signal. Their respective contributions are deter-
mined thanks to an angular dependence of the signal for the planar Hall effect, and to simulations for the anomalous Hall
effect. On top of that, we demonstrate the electric-control of the spin-charge interconversion, whose origin in this system
appears to be charge trapping.

In conclusion, we present a new kind of spintronic device, the Ferro-Electric Spin-Orbit (FESO) device, based on an oxide
2DEG. We demonstrate that the spin-to-charge interconversion due to the spin-orbit coupling can be directly measured
and electrically controlled. This constitutes a step towards the development of a non-volatile spintronics, in which the
information can be controlled by a ferroelectric state, thus resulting in a drastic reduction of the power consumption of
non-volatile spintronic logic devices.
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In the spintronics community there is a constant search for materials that can sustain the propagation of spin infor-
mation with low losses. Although magnetic insulators posses the record of lowest magnetic precession damping, their
small magnetization and inability to host electron currents reduce their potential uses in spintronic devices. Therefore,
there is a technological and fundamental interest in novel metallic ferromagnets where electrons can be used to carry spin
without major precession losses. Half metals are materials that combine the best of both worlds: they have conduction
electrons with a single spin orientation at the Fermi level (100% spin-polarized density of states) that reduces drastically
the electron-magnon scattering and consequently the magnetic losses. A textbook example of these type of materials is
the Heusler compound Co2MnSi that has been shown to have a very low Gilbert damping factor α between 1 × 10−3 to
5 × 10−4 and an almost entirely spin-polarized density of states at the Fermi energy[1, 2]. In this study, we look further
into the quasi-bulk transport properties of this material by measuring for the first time the degree of spin-polarization of the
electron current P = (ρ↓ −ρ↑)/(ρ↓ +ρ↑) by spin-wave Doppler shift[3].

The platform of our investigation are epitaxial Co2MnSi(20 nm)/MgO(8 nm)/Ti(4 nm) films grown by molecular beam
epitaxy on (001) MgO substrates. We characterized the magnetic properties of the films by broadband ferromagnetic
resonance from which we confirm a low Gilbert damping factor of α = 1.0 × 10−3 for perpendicularly magnetized films
and α = 1.3 × 10−3 for in-plane magnetized films. Additionally, this technique[4] allows us to determine the effective
magnetization, cubic anisotropy and exchange stiffness constants.

Figure 1: Spin wave Doppler shift device with a MgO/Co2MnSi/MgO/Ti strip

For the spin-wave Doppler shift measurements, the films are patterned into 15 µm-wide strips that serve as guides for
electron conduction and spin wave propagation. An electrical current is injected and a voltage measured by 4 patterned DC-
contacts, while nanofabricated microwave antennas allow us to perform spin wave spectroscopy (see Fig. 1). We measure
the mutual inductance between the two antennas [Fig. 2 (a)] and determine the spin wave frequency shift produced by the
applied electron current [inset of Fig. 2 (a)].

As expected from the adiabatic spin transfer torque (STT) process[5], we observe that the Doppler shift δ fDoppler =
(|δk>0| + |δk<0|)/4 increases linearly with the applied electrical current. From the corresponding slope, we extract the
degree of spin-polarization of the current P = 1.0±0.1 (see Fig. 2 (b)). This confirms that majority electrons are the charge
carriers of the electrical current in Co2MnSi. This agrees with the theoretical 100% spin-polarized density of states, and the
energy gap observed by spin-resolved photoemission for the minority band[1, 2]. In addition to the characterization of the
adiabatic process, we also estimate the non-adiabatic STT parameter β [5] from the variation of the magnitude of mutual
inductance with applied current.
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(a) (b)

Figure 2: (a) Real component of the mutual inductance signal between antennas produced by the propagation of spin waves
under an electrical current of 16 mA, (b) Spin wave Doppler frequency shift vs. applied electron current.
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Standard spintronic terahertz emitters (STE) typically consist of nanometer thick ferromagnetic (FM)/heavy metal (HM)
junctions. While excited by a femtosecond near-infrared laser, an out-of-equilibrium spin current is generated in the former
[1], that is converted to a transient charge-current in the latter, defining a spin-to-charge conversion (SCC). This current
then gives rise to a linearly polarized Terahertz (THz) pulse, where the polarization can be easily controlled by a small
applied magnetic field. Owing to the gap-less and broadband THz field emitted by such ultrathin materials, STE have raised
considerable interest [2] as novel source for THz spectroscopy as well as an exciting platform to study the SCC mechanisms
via THz time-domain spectroscopy (TDS).

In standard FM/HM STE, the SCC is mainly driven by a bulk mechanism - the inverse spin Hall effect (ISHE) - occuring
in the HM due to its large spin-orbit coupling. Additionally, at the interfaces where a strong Rashba effect is observed, an
incoming spin current may be converted in charge current via an interfacial mechanism, the inverse Rashba-Edelstein effect
(IREE). Consequently, the stronger the Rashba effect is, higher is the SCC, and so the THz emission.

Motivated by recent theoretical works [3] showing large Rashba splitting at transition metal dichalcogenide/toplogical
insulator interfaces made of PtSe2/Bi2Se3, as well as recent experimental works showing an increase of THz emission via
IREE in these heterostructures [4], we propose to experimentally study the SCC efficiency of such systems using THz-TDS.

Our three samples under investigation have the following structure : Al/Co/PtSe2(xML)/Bi2Se3(yQL) on a sapphire
substrate (ML: monolayer, QL: quintuple layer), with (x=0,y=2) considered as the reference, and two other samples with
2ML of PtSe2, with y=2 and y=10 respectively. In all experiments, the STE are excited on Co face by a Yb-doped solid state
femtosecond laser coupled to an optical parametric amplifier, delivering 80 fs pulses centered at the desired wavelength, and
the emitted THz pulses are detected using electro-sampling with a THz-TDS system in transmission configuration. Owing
to our widely tunable laser setup, we performed THz emission measurements using pump central wavelengths of 670, 780
and 940 nm.

The pump beam polarization is fixed and linear, we apply a small and fixed in-plane magnetic field (+B ∼ 40mT) and
we measure the THz emission while rotating the sample over the pump beam axis. In order to separate the magnetic/non-
magnetic contributions Smag/Snon−mag from the THz time traces S+B, we perform the same measurements with a reversed
magnetic field (-B) and compute the following quantities:

Smag =
S+B − S−B

2
and Snon−mag =

S+B + S−B

2
(1)

The peak-to-peak values of each Smag and Snon−mag time traces for each angle are then reported on a polar plot.
For the magnetic contribution (see Fig. 1), we observe an isotropic emission for all samples, as expected from the

linear response theory (1st order of perturbation). The addition of PtSe2(2ML) in the structure leads to a decrease of the
THz emission, which might originates from a pure optical absorption. However, by increasing the thickness of Bi2Se3, the
emission is increased, even larger than the reference. The enhancement of the magnetic contribution to the THz emission
thus might originate from the existence of a large Rashba splitting at the PtSe2(2ML)/Bi2Se3(10QL) interface or from a SCC
via ISHE in the bulk Bi2Se3 as both mechanisms coexist [5].

We now turn on the non-magnetic contribution to the THz emission, as shown in Fig. 2. We note that only the sample
with PtSe2 and the thicker layers of Bi2Se3 exhibit a significant THz signal. The emission pattern is anisotropic, showing
two 3-fold symmetries, which may originate either from the dichalcogenide or from the insulating layers (rectification ef-
fects or shift currents). Interestingly, if we compare the magnetic and non-magnetic contributions for this specific sample
(right figures in Fig. 1 and Fig. 2), we see that the THz emission amplitudes have opposite variations with respect to the
excitation wavelength. This evolution is in agreement with literature for the magnetic contribution. For the non-magnetic
contribution, it could originate from the formation of a Schottky barrier at the PtSe2(2ML)/Bi2Se3(10QL) interface, which
would impose specific electron transmission conditions at the interface, depending on the energy gap of PtSe2.
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Figure 1: Magnetic contribution to THz emission in our samples of interest, extracted using Eq. 1, for various excitation
wavelengths. The signs indicate the phase of the THz temporal traces. The numbers in parenthesis indicates the thickness
of the Al and Co layers in nm.

Figure 2: Non-magnetic contribution to THz emission in our samples of interest, extracted using Eq. 1, for various excitation
wavelengths. The signs indicate the phase of the THz temporal traces, which changes depending on the sample angle. The
numbers in parenthesis indicates the thickness of the Al and Co layers in nm.

In conclusion, we have performed THz-TDS on spintronic emitters made of transition metal dichalcogenide/ topological
insulator layers, showing complex THz emission patterns and interactions with the pump energy. In order to conclude on
the main mechanisms involved in the THz emission, we are currently investigating a fourth system made of Bi2Se3(10QL)
without PtSe2. Additionally, one could use the near-infrared idler pump from our system (0.5 - 1.03 eV) to pump the
emitters below the PtSe2(2ML) gap (0.65 - 0.85 eV) in order to better understand its role in the non-magnetic THz emission
process.
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The possibility of manipulating magnetic states on pico- down to femtosecond time scales by ultrashort light pulses opens
promising new ways for energy efficient spintronics and high-density data recording applications. Scientific breakthroughs
over the past 25 years include the discovery of ultrafast laser-induced demagnetization [1] and all-optical switching of the
magnetization [2]. Both mechanisms rely on the excitation of the magnetic material with a femtosecond optical laser, i. e.,
the generation of a highly non-equilibrium hot electron distribution with an energy of a few 1 eV, and the consecutive
transfer of energy to spin and phonon degrees of freedom. Hence, such on-off and toggle switching of the magnetization
can be understood as pure thermal phenomena involving incoherent spin dynamics. The manipulation of spins in a coherent
way, as observed, e. g., in [3], has become possible through the availability of highly intense light pulses in the THz spectral
range (≈ 0.1–10 THz), both at linear accelerators like LCLS or FLASH [4, 5] and in the laboratory [6], reaching peak electric
and magnetic field amplitudes in the range of a few 1 GV m−1 and 1 T, respectively. With a photon energy of only a few 1–
10 meV, THz radiation allows to directly access numerous low-energy excitations, such as lattice vibrations and coherent
spin precessions.
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Figure 1: a Scattering images Im(q) for selected delay times t obtained by TR-XRMS from the magnetic multi-domain state of
a Co/Pt thin film at the BL3 instrument of FLASH. b Ultrafast response of the magnetization ∆mz(t)/mz,0 to polychromatic
THz excitation. The data is modeled as a convolution of incoherent ultrafast demagnetization and coherent spin precession.

We report on the ultrafast response of a magnetic multi-domain state upon polychromatic THz excitation employing
time-resolved XUV resonant magnetic scattering (TR-XRMS) at the free-electron laser FLASH. Scattering images from the
Co/Pt thin film with perpendicular magnetic anisotropy (PMA) and nanoscale magnetic domains are shown in Fig. 1 a
for selected pump–probe delay times t. We observe an ultrafast de- and re-magnetization within only 1 ps, when blocking
high-energy components of the THz spectrum with a longpass filter, and a step-like demagnetization over ≈ 2ps with a
precessional recovery, when using the full THz spectrum (see Fig. 1 b). We develop a unified model which is capable of
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describing both responses via the convolution of incoherent ultrafast demagnetization and coherent spin precession in the
presence of PMA. For the case of using the filtered THz spectrum, at any time, the magnetic anisotropy energy is much
larger than the thermal energy so that the precessional spin dynamics are strongly damped. Only for the case of using the
unfiltered THz spectrum, the high-energy electronic excitations result in a substantial phonon excitation and thus a noticable
transient reduction of PMA. Analysis of the temporal evolution of the lateral domain configuration via the position of the
first-order magnetic scattering ring reveals that the domain state remains largely unperturbed throughout these ultrafast
dynamics. Our results shed new light on the coherent response of spins to intense THz radiation in ferromagnetic Co/Pt thin
films with PMA and nanoscale magnetic multi-domain state.
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Abstract - Spintronic emitters have become an important THz photonic source with broadband THz emission and
the ability to magnetically control the emitted polarization through ultrafast spin-to-charge conversion (SCC). This
work has recently driven investigations of two-dimensional (2D) materials for new types of spintronic THz sources.
One such 2D material is the transition-metal dichalcogenide PtSe2. Here we present THz spintronic sources based
on high quality epitaxially grown CoFeB/PtSe2/graphene heterostructures, with PtSe2 thicknesses ranging from 1 to
15 monolayers. The unique thickness dependent electronic structure of PtSe2 permits to demonstrate the different
origins of the THz emission - from the inverse Rashba-Edelstein effect in monolayer PtSe2 to the inverse spin Hall
effect for multilayers. This unique bandstructure flexibility makes PtSe2 an ideal candidate as a THz spintronic 2D
material and to further study and explore the underlying mechanisms and engineering of ultrafast SCC.

During the past two decades, two-dimensional (2D) materials have raised tremendous interest in the scientific com-
munity for the unique and specific properties as a result of their reduced dimensionality and van der Waals character. In
particular, when isolated to one monolayer (ML), transition metal dichalcogenides (TMD) 1H-MX2 (with M=Mo, W and
X=S, Se) become direct bandgap semiconductors with remarkable optical properties [1]. Platinum diselenide (PtSe2) is a
very recent TMD that shows several key properties like air stability, high carrier mobility and high photoelectrical response in
the near-infrared range [2]. Moreover, it exhibits a layer-dependent bandgap: one monolayer of PtSe2 is a 1.9 eV bandgap
semiconductor while layers greater than 3 ML it becomes semi-metallic [3]. Finally, the strong spin-orbit coupling of PtSe2
makes it an excellent candidate to study spin-to-charge conversion (SCC) in van der Waals materials. In this respect, it
constitutes a unique system to observe the transition from inverse Rashba-Edelstein effect (IREE) in the semiconducting
phase to inverse spin Hall effect (ISHE) in the semi-metallic phase. Terahertz (THz) emission spectroscopy in this respect
has become a powerful and established tool to probe SCC [4]. The associated devices are then known as spintronic THz
emitters and were first demonstrated with metallic ferromagnetic (Co, Fe...)/nonmagnetic (Pt, W...) thin films. They present
several advantages compared to other THz sources such as broadband THz emission, high efficiency and easy control of
radiation parameters. To date, very few 2D materials have been incorporated in THz spintronic emitters and they all exhibit
the 1H crystal symmetry, which is not favorable to convert in-plane polarized spins into charge currents.

In this work [5], we have grown single crystalline mono and multilayers of 1T-PtSe2 on graphene, followed by amorphous
CoFeB, with atomically sharp interfaces. We used a full set of characterization tools to demonstrate the structural and
chemical preservation of PtSe2 after CoFeB deposition. SCC was then studied on these advanced 2D samples using THz
emission spectroscopy as a function of PtSe2 thickness (from 1 to 15 ML), that showed the generation of efficient THz
electric fields. This THz emission is shown to arise from the 1T crystal structure and large spin-orbit coupling of PtSe2. The
measured peak electric field as a function of number PtSe2 are shown in Figure 1. The THz electric field clearly shows a
two-step dependence with PtSe2 thickness, which we interpret as the transition from the IREE in the semiconducting regime
to the ISHE in the semimetallic regime (around 3 to 4 MLs). As shown by ab initio calculations in figure 1b that takes into
account the different SCC mechanisms, the IREE arises from the large Rashba spin splitting at the PtSe2/graphene interface
by the combination of large spin-orbit coupling and electron transfer from graphene to PtSe2, generating an interface electric
field. By fitting the thickness dependence, we can extract the out-of-plane spin diffusion length in PtSe2 to be 2-3 nm and
find that SCC by IREE at the PtSe2/Gr interface is twice as efficient than that of ISHE in bulk PtSe2. This is summarized
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Figure 1: a) Optical excitation of CoFeB/PtSe2/graphene junctions for THz generation. b) Normalized peak THz field
obtained from samples with different number of PtSe2 layers. Transition from semiconductor (SC) to semimetal (SM)
can be estimated around 4 monolayers. c) and d) Illustration of the spin-to-charge conversion in CoFeB/PtSe2/graphene
samples. In the sample with 1 monolayer PtSe2 a) the contribution is due to IREE and thick PtSe2 sample b) where both
ISHE and IREE are presented. White curve: profile of js(z). js(0) is the effective spin current injected in PtSe2 from optically
pumped CoFeB.

in Figure c) and d) where IREE takes place in the PtSe2 monolayer in contact with graphene and ISHE in the semimetallic
bulk PtSe2 respectively.

To summarize, owing its unique thickness dependent electronic structure, PtSe2-ferromagnetic heterostructures have
shown THz emission and has enabled to observe the transition from IREE to ISHE in a single 2D material system. This opens
up novel applications of these structures to THz spintronics. For example, by further adjusting the Fermi level position by
gating the semiconductor material, it will be possible to modulate and dramatically enhance the SCC efficiency, and achieve
electronically controlled spintronic THz emission.
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NiO is a text-book example of an antiferromagnetic oxide that could be part of spintronic devices. It has a complex
magnetic structure, in which four possible T domains (favorite magnetization staggering direction) with 3 possible S ori-
entations each (favorite orientations of spin) may stabilize, making a total of 12 possible configurations or 12 so called
TS domains. Transition zones - i.e. domain walls (DWs) - between TS domains may occur in NiO. They usually exhibit
complicated spin configurations which drastically influence the magnetic properties. These DWs may also turn out to be
detrimental for the use of NiO - or any antiferromagnetic compound - in spintronic devices. In fact, some experimental and
theoretical studies have been dedicated to DWs in NiO [1], but a complete description at the atomic scale is still missing.

In the present work, we provide insights on a large variety of domain walls (DWs) in NiO at the atomic scale and try to
establish links with experimental observations. We employ for that purpose an Heisenberg description of spin interactions
in NiO on a rigid lattice as implemented in Vampire [2], an Atomic Spin Dynamic (ASD) software, for which superexchange
interactions and anisotropic constants were carefully optimized in order to reproduce the magnetic structure and the Néel
temperature.

For each domain wall simulated, we analyse in detail the spin profile and we calculate both X-ray Magnetic Linear
Dichroism-PhotoEmission Electron Microscope (XMLD-PEEM) and Nitrogen Vacancies Magnetometry (NVM) images from
which we deduce their widths (when possible).
We observe in our simulations that spins have to go through the direction common to both circumscribing T domains
when they transit throughout DWs. Indeed, their detailed configurations in DWs are driven by both bordering T domains.
However, we show that for any surface corresponding to one T domain of the walls, DWs do have enough ferrimagnetic
character so that widths can be seen and measured with NVM technique. Conversely, XMLD-PEEM images always exhibit
significant changes of intensity whatever the surface plane and the DW type. It therefore reveals easy to determine the
width of all DWs with this technique.
We also find that the calculated DWs widths show a

p
1/K2 dependence in good agreement with theory [3]. The extrapolated

widths of DWs using experimental anisotropic constants correspond nicely to experimental observations [1]. Moreover, some
widths observed in experiments can be re-interpreted and even unequivocally related to specific DWs.
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Bismuth Ferrite (BiFeO3) exhibits both a ferroelectric and antiferromagnetic behavior at room temperature, placing itself
at the forefront of research on multiferroic materials. In the rhombohedral phase, its ferroelectric polarization lies along
the diagonals of the unit cell, while its antiferromagnetic order has been shown to depend on the applied strain.

Thus, in epitaxially strained thin films, BiFeO3 can display bulk-like (type-1) spin cycloids, exotic (type-2) spin cycloids,
or a G-type antiferromagnetic order. Because of the magnetoelectric coupling, both ferroic orders of BiFeO3 are coupled to-
gether, yielding a one-to-one correspondence between the ferroelectric polarization direction and the propagation direction
of the spin cycloid in thin films [1].

In this context, I will present the consequences of this magnetoelectric coupling on topological polar nanotextures
designed on epitaxial BiFeO3 thin films. It will be shown that stable multiferroic topological structures can be induced
electrically, with antiferromagnetic domain wall patterns precisely following that of their ferroelectric counterparts.

Such textures are written through the interaction of a conductive AFM tip with either a bottom or top electrode created
via electronic beam lithography [2], and their characterization is performed by vector piezoresponse force microscopy (PFM)
and scanning NV-center magnetometry.

Figure 1: Magnetoelectric coupling in a ferroelectric center-convergent state under compressive strain. a, PFM vector map
and underlying ferroelectric texture. b, Overlap with magnetic field measured by NV-center magnetometry. c, Schematics
of ferroelectric polarization and coupled spin cycloid propagation directions in all four quadrants.

Among the textures stabilized under compressively strained thin films, the four-quadrant center-divergent and center-
convergent ferroelectric textures all display a chiral in-plane rotation of the spin cycloid propagation direction around the
center, while it remains perpendicular to the ferroelectric polarization (see Fig. 1).

When the films are grown under slight tensile strain, the same ferroelectric textures yield a unique and uniform in-plane
spin cycloid propagation direction on all quadrants.

Finally, and quite exotically, those same ferroelectric textures on films grown under larger tensile strain exhibit a one-
to-one correspondence between the canted G-type antiferromagnetic moment direction and the ferroelectric polarization,
as illustrated in Fig. 2.

In all cases, those multiferroic topological polar textures, resulting from electrical writing, contrast with the as-grown
state patterns of the thin films, thus paving the way for potential applications in high-density multiferroic topological mem-
ories for instance.
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Figure 2: Magnetoelectric coupling in a ferroelectric center-divergent state under tensile strain. a, PFM vector map and
underlying ferroelectric texture. b, Overlap with magnetic field measured by NV-center magnetometry. c, Schematics of
ferroelectric polarization and coupled G-type magnetization directions in all four quadrants.
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Magnetic skyrmions, which consist of local swirls of spins, are a prime example of topologically nontrivial spin textures.
Nanoscale isolated skyrmions exist at low temperature in bulk chiral materials, while in thin films and multilayers, room
temperature (RT) stable skyrmions exhibit intermediate sizes ranging between 50 nm to a few µm. Ferromagnetic metallic
superlattices are materials which are promising for the development of RT nanoscale skyrmions due to the high tunabil-
ity of their properties. There exist a large number of experimental studies reporting the observation of stripe domains
and skyrmion bubbles in metallic multilayers, for example Pt/Fe/Ir[1] and Ta/Co/Pt[2]. It is well understood that these
skyrmions and stripes are created by a combined action of the stray field effect and the Dzyaloshinskii-Moria interaction
(DMI)[3]. These non-collinear spin structures can also be easily simulated numericaly[2]. However, in a system with a
high number of degree of freedom, the quest remains open regarding how to optimize the parameters to obtain the most
compact and stable skyrmion and the development of adequate analytical tools could lead to breakthrough and transform
this quest from a random walk to a guided tour.

We focused our investigations on a classical [Pt/Co/Ta]n metallic superlattices system, n being the number of repetition
of the tri-layer. Samples are fabricated by magnetron sputtering at LPCNO. In this system, RT skyrmionic bubbles as small as
50 nm have been observed when the Co thickness was tuned close to the spin reorientation transition[2]. In our study, we
work with Pt/Co/Ta trilayers with a fixed Co thickness of 0.8 nm and we tune the thickness of the total system by varying
the number of repetitions n. This allows us to tune selectively the effect of the stray field while keeping roughly constant the
system intrinsic parameters (magneto-crystalline anisotropy, saturation magnetisation, DMI). Spatially resolved magnetic
measurements are performed using magneto-optic techniques and TEM methods - in particular Lorentz microscopy (LTEM)
and Electron Holography (EH) for nanoscale studies (see figure 1). We were able to image the magnetic micro-structures of
[Pt/Co/Ta]n multilayers with various different number of repetition. We studied the sample without applied field, but also
with in-situ applied field (using LTEM), in order to study the formation of magnetic skyrmions by applied magnetic field,
the stripe-skyrmion transition, and the presence of skyrmion lattice or isolated skyrmions in certain samples (see figure
1 (b)). We could correlate magnetic contrast observation with applied field to magnetic hysteresis obtained from VSM
measurements. We also studied the influence of the temperature on the stripe pattern and on the formation of skyrmions.
We will present an experimental study of the stripe domain structures and skyrmions as a function of the multilayer total
thickness.

In complement with the experimental observations, we used a combination of micromagnetic simulations based on
Mumax3 and analytical modeling to analyze the variations of the stripes periods. The very good agreement between the
simulation and the analytical model (see figure 1(a)) allows us to demonstrate that the stray field effect becomes fully
non-local in the intermediate thickness regime under study. We obtained an analytical formula for the stripe period which
enables us to predict the minimum stripe width (and consequently the minimum skyrmion size) that can be observed in
this experimental system, with the associated magnetic parameters that have to be modified in order to obtain them. The
micromagnetic simulations also confirm that there is a negligible z dependence of the spin structure and that the Néel
rotation is preserved due to the predominance of the DMI over the stray field effects. This is in agreement with the Lorentz
TEM observations that do not display any contrast for the stripe and skyrmions without tilting the sample, which is a sign
of a Néel rotation. We will present complementary studies where the temperature and applied magnetic field are used to
promote the nucleation and tune the skyrmions sizes and densities.
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Figure 1: (a) Study of the stripe domain width as a function of the multilayer thickness in [Pt/Co/Ta]n multilayers. Insets:
LTEM observation of stripe domains at zero applied field for two different numbers of repetition n (b) Skyrmions observed
by LTEM under different applied magnetic fields, and 30° tilt of sample, presenting mixed stripe-skyrmion, skyrmion lattice
and isolated skyrmions magnetic configurations. Scale bars are 2µm long.
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Nano-scale size, nontrivial topology and particle-like motion are some of the characteristics of magnetic skyrmions
that make them attractive for next-generation nanoscale information storage devices [1]. Significant advances have been
made in the recent past to understand the underlying mechanisms to stabilize and move these particle-like excitations in
ferromagnetic thin films [2]. These advancements have allowed researchers to routinely stabilize and move skyrmions
at room temperature. However, there are several challenges that are yet to be overcome if skyrmions are to be used
in functional devices. Arguably, the most important of these challenges is to overcome the skyrmion Hall effect (SkHe)
[3], which is an intrinsic property of skyrmions in ferromagnets owing to their non-trivial topology. Due to this property,
skyrmions deflect from a straight trajectory along the applied current direction and deviate towards the edge of the device
where they can be annihilated causing loss of information. It also limits the velocity of skyrmions in the race-track [4]. To
circumvent this problem, synthetic antiferromagnets (SAF) can be designed, where due to opposite topology of skyrmions
in two ferromagnetic sublayers, the composite skyrmion is predicted to move along the current direction without any SkHe
[5]. Another challenge is to eliminate the use of magnetic field for stabilizing skyrmions, which increases the complexity
of devices. It is even more important in the case of SAF, as they are insensitive to magnetic field. We have proposed
and experimentally verified a methodology to nucleate and move skyrmions in ferromagnets at zero magnetic field by
engineering the effective anisotropy [6]. This acts as a guideline towards stabilising zero field skyrmions in SAF.

Figure 1: Hysteresis loop of a balanced SAF with out-of-plane field. The sketched arrows indicate the macrospin alignment
of the top (red) and bottom (blue) Co layer (a). MFM image of the as-grown state (b), and zero field state after saturation
(c).

In this study we show nucleation and motion of SAF skyrmions in a Co based multilayer at room temperature and zero
external magnetic field. To stabilize these textures, we explore a multilayer of [Pt(5nm) /Co(tb) /Ir(0.6nm)/ Pt(0.8nm)/
Co(tt) / Ta(5nm)]. Here, the two Co layers are antiferromagnetically coupled through an Ir/Pt spacer with an exchange
field of about 0.5 T. To ensure the same sign of Dzyaloshinskii-Moriya interaction (DMI) in both layers, each Co layer has
asymmetric interfaces with a Pt layer beneath it. To promote efficient current induced motion, Co layers are in contact with
thick layers which act as spin current sources. Since the positions of the thick layers (below for bottom and above for top
Co) are different, two layers with opposite spin Hall effect (Pt and Ta in our case) are required to drive skyrmions. It is
to be noted that the top and bottom Co layers have different interfaces. The bottom Co layer exhibits out-of-plane (OOP)
anisotropy, while the top Co layer has in-plane (IP) anisotropy. Hysteresis behaviour of an optimised sample (keeping the
zero field state homogeneous yet reducing its stability as much as possible) is shown in Fig. 1 (a). Through magnetic force
microscopy (MFM) imaging, it is verified that the as grown state is textured (Fig. 1 (b)). These two properties combined
make this sample ideal to study nucleation and dynamics of skyrmions at zero field.

After optimization of sample properties, we study their current-induced propagation in micrometric tracks. To maintain
homogeneity of current lines, we choose flat contact pads on top of the magnetic track. Due to naturally occurring small
inhomogeneities at the contact, we see specific nucleation points in the sample. Simultaneous nucleation and motion of
skyrmions with radius varying from 50-400 nm were observed (Fig. 2 (a-c)) along with nucleation of some larger domains
close to the edge of the track (neglected during analysis). Fig. 2 (d) and (e) show skyrmion velocity and skyrmion Hall
angle (SkHA) as a function of current density. These skyrmions could move up to 300 m/s for the largest current density
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of 8× 1011 A/m2. On the other hand, a mean SkHA of less than 3 degrees is observed for all the applied current densities.
This confirms the predictions of large velocity and vanishingly small SkHA for SAF skyrmions. In a unbalanced situation
(30% uncompensated SAF; bottom layer dominating), we observed a SKHA of around 30 degrees. The deflection direction
reverses by reversing the magnetization polarity. This proves the topological nature of these textures. Further, due to the
presence of two sublayers with a finite interlayer coupling and different interfacial properties, the SAF layer has a rich
magnetization dynamics. We explore this by detecting the spectra of inelastic light scattering by magnons (Brillouin light
scattering).

Figure 2: Skyrmion nucleation from homogeneous state after sending ten 7.3× 1011 A/m2, 4 ns pulses (a,b). Saturation
magnetic field direction has been changed between (a) and (b) without noticeable changes in skyrmion motion contrary
to ferromagnets. Nucleated skyrmion radius distribution (c). Skyrmion velocity (d) and SKHA (e) as a function of current
density.
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In ultrathin Heavy Metal/Ferromagnet/Metal Oxide (HM/FM/MOx) heterostructures with Perpendicular
Magnetic Anisotropy (PMA), interfacial Dzyaloshinskii-Moriya Interaction (DMI) generally plays an important
role in the stabilization of Néel domain walls with a given sense of rotation, also called chirality [1],[2]. The
sign of the DMI coefficient D determines the chirality of DWs (Fig. 1a). This antisymmetric exchange interaction
arises from the combination of spin-orbit coupling and structural inversion asymmetry at HM/FM and FM/MOx
interfaces. A fine tuning of interfaces allows a control of the DMI strength. In regions with small DMI amplitude,
we previously observed that a gate voltage can tune DMI sign and dynamically invert domain wall chirality [3].
Hence low DMI samples are promising for the versatile and dymanic control of unique skyrmions.

In a previous study [4], we showed that the chirality of DWs and the DMI sign in a sputtered Ta/FeCoB/TaOx
trilayer may be inverted by tuning the FeCoB thickness and FeCoB/TaOx interface oxidation state. We first
used a quantitative measurement of the coefficient D by Brillouin Light Scattering (BLS). Additionnaly, in the
regions where DMI is too small to be measured, we used qualitative study of DMI sign using the Current Induced
Motion (CIM) of DWs [5] observed under polar Magneto-Optical Kerr Effect microscopy. The CIM technique is
based on the Spin Hall Effect, which involves the application of an electric current to generate a transverse spin
current in the Heavy Metal (HM) layer. As a result, a spin accumulation occurs at the HM/FM interface, which
polarization is determined by the Spin Hall Angle of the HM. At the interface between the HM and FM layers,
the angular momentum of the accumulated spins is transferred to those within the FM layer. This transfer leads
to the generation of a Spin-Orbit Torque, which induces the motion of the domain wall (DW). The Damping-Like
component of this torque depends on both the direction of magnetization and the spin accumulation. This implies
that the motion will be in opposite directions depending on the chirality of the magnetic texture: Clockwise (CW)
(resp. Counter Clock-Wise (CCW)) DW moves along (resp. against) the current when using a HM with a negative
spin Hall angle like Ta.

In order to better understand the material dependence and the underlying mechanisms of the DMI sign vari-
ation, we present here a systematic study of the influence on DMI sign of FeCoB thickness and FeCoB/TaOx
oxidation state. For this purpose, the FeCoB layer is deposited with a thickness gradient perpendicular to a sec-
ond gradient of Ta that is subsequently oxidized, leading to an oxidation gradient of the FeCoB/TaOx interface
(Fig. 1b). Both gradients influence the anisotropy in our sample leading to different regions with In-Plane (IP)
anisotropy, PMA and Paramagnetic regime. The previously observed changes in DMI sign have been found at the
transition between paramagnetic regime and PMA as well as between PMA and IP anisotropy [4]. In our double
wedge sample, chirality has been extracted over the whole PMA region by direct observation of DW motion (see
Fig. 2a). Our observation of the DMI sign transition (red dotted line in Fig. 2a) reveals a stair-like evolution,
indicating the importance of the layer coverage percentage.

In order to clarify this phenomenon we performed ab initio calculations. They reveal a change in the sign of
the DMI energy at the interface between Fe and Ta as a function of the oxidation of the Ta interfacial layer (see
Fig. 2b). This observation holds regardless of the disorder in the oxygen atoms at the interface as we can see in
Fig. 2b for different configurations shown in its insets.. Similarly, when examining the DMI sign relative to the
thickness of Fe for different oxidation state at the interface, ab initio calculations exhibit good agreement with
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Figure 1: a) Representation of a Clock-Wise CW (Top) and Counter Clock-Wise CCW (Bottom) Néel domain wall.
b) Schematic representation of our double wedge sample. c) Differential MOKE image of CCW DW. A mi-
crobonded wire is used to send current. The current direction J and the DW motion are represented by a white
and a red arrow respectively.

our experimental results. Finally, with the such calculations we are able to untangle the mechanisms of the DMI
sign change as a function of both oxidation state and ferromagnetic thickness. These findings may help to design
future devices with a controlled value and sign of DMI in order to optimize domain wall mobility [4].

0 25 50 75 100
-10

-5

0

5

10

15

20

25

30

Ta-Oxidation %

E
D

M
I 
(m

e
V

)
 configuration 1
 configuration 2

b)a)

CW

CCW

0 25 50 75 100
-10

-5

0

5

10

15

20

25

30

Ta-Oxidation %

E
D

M
I 
(m

e
V

)

 configuration 1
 configuration 2

0 25 50 75 100
-10

-5

0

5

10

15

20

25

30

Ta-Oxidation %

E
D

M
I 
(m

e
V

)

 configuration 1
 configuration 2

0 25 50 75 100
-10

-5

0

5

10

15

20

25

30

Ta-Oxidation %

E
D

M
I 
(m

e
V

)

 configuration 1
 configuration 2

Configuration 2
50 % of oxydation 

Configuration 1
50 % of oxydation 

Ta3Fe7

Figure 2: a) Map of the DW chirality in the PMA region with respect to FeCoB thickness (tFeCoB) and oxidation
state (tTa). Regions with CW (resp. CCW) DWs are represented with full purple squares (resp. empty orange
squares) and DMI sign crossover is represented by red circles. The dashed line is a guide to the eye. The two stars
correspond to DMI sign inversion observed in [4] b) Ab initio calculated DMI energy (in meV) as a function of
the interfacial Ta layer oxydation (in %), for two different configurations of the oxygen atomes representing 50
% of oxydation: corresponding to an ordered interface (configuration 1, bottom) or more disordered interface
(configuration 2, top).
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Magnetic bubbles and bubble lattices are of great importance for investigations in magnonics because of their non-
trivial magnon band structures [1, 2] and skew scattering predicted between spin waves and magnetic bubbles [3, 4].
Understanding their resonance and scattering processes with spin waves are fundamental to bubble-based devices. Magnetic
bubbles, e.g. skyrmions, are found in multiple material systems, such as bulk chiral magnets and ultra-thin multilayers
consisting of ferromagnetic layers and normal metal layers with strong spin-orbit coupling. However, those systems host
bubbles and skyrmions either typically at cryogenic temperature or the damping parameters are significantly increased.

Figure 1: (a) Static X-ray transmission image of bubble and lattices in Bi-doped YIG film. The black dotted frame marks the
edge of the antenna. White and black colors represent the X-ray transmission signal. (b and c) Phase distribution of bubble
dynamics at 70 MHz and 360 MHz, respectively.

In this work, magnetic bubbles down to 250 nm-diameter in low-damping 20 nm-thick Bi-doped YIG [5] were stabilized
by controlling the anisotropy (see Fig. 1(a)). We utilize the Maxymus time-resolved scanning transmission X-ray microscope
(STXM) at Bessy II [6] to image the spin dynamic behavior of the bubbles using the x-ray at the L3 edge of Fe ( 709 eV).
Below 100 MHz, multiple types of magnetic bubble resonance were observed, as shown in Fig. 1(b), depending on the shape
of the bubbles. Above 100 MHz, spin waves excited from the antenna propagate through the area of resonating magnetic
bubbles and interact with them. The phase image in Fig. 1(c) clearly indicates the wavefront in the region of the bubbles and
bubble lattices. Isolated bubble resonances were also observed at different applied fields. Our observations offers insight
into the manipulation of magnetic bubbles using spin waves and pave the way for bubble-based magnonic device designs.
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